Advertisement

N6-substituted adenine derivatives and RNA primitive catalysts

  • Jean-Luc Décout
  • Marie-Christine Maurel
Article

Abstract

In our search for primitive RNA catalysts, we noticed that N6-ribosyl-adenine, a compound easily synthesized under presumed prebiotic conditions, has a free imidazole group. We showed that it is, as a catalyst, a potential analogue of histidine. Furthermore, among the chemical groups involved in protein catalysis, the imidazole ring of histidine has no equivalent in the RNA world. We have synthesized aliphatic amino groups containing polymers with adenine rings linked to macromolecules by their 6-amino group. These polymers exhibit pronounced catalytic activities in the hydrolysis of p-nitrophenylacetate. We discuss here the fact that in primitive catalysis the imidazole group could have been replaced by N6-substituted adenine derivatives.

Keywords

Catalysis Geochemistry Catalytic Activity Imidazole Macromolecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach-Richter, L., Gupta, R., Stetter, K. O., and Woese, C. R.: 1987,System. Appl. Microbiol. 9, 34–39.Google Scholar
  2. Barbier, B. and Brack, A.: 1988,J. Am. Chem. Soc. 110, 6880.Google Scholar
  3. Benner, S. A., Allemann, R. K., Ellington, A. D., Ge, L., Glasfeld, A., Leanz, G. F., Kraunch, T., MacPherson, L. J., Moroney, S., Picirilli, J. A., and Weinhold, E.: 1987,Cold. Spring. Harbor. Symp. Quant. Biol. Vol.52, 53–63.Google Scholar
  4. Cech, T. R., Zaug, A. J., and Grabowsky, P. J.: 1981,Cell 27, 487–496.Google Scholar
  5. Dyson, W. H., Chen, C. M., Alam, S. N., and Hall R. H.: 1970,Science,170, 328–330.Google Scholar
  6. Eakin, R. E.: 1963,Proc. Natl. Acad. Sci. U. S. A. 49, 360–366.Google Scholar
  7. Egholm, M., Buchardt, O., Nielsen, P. E., and Berg, R. H.: 1992,J. Am. Chem. Soc. 114, 1895–1897.Google Scholar
  8. Ferris, J. P. and Ertem, E.: 1992,Science,257, 1387–1389.Google Scholar
  9. Fuller, W. D., Sanchez, R. A. and Orgel, L. E.:1972,J. Mol. Biol. 67, 25–33.Google Scholar
  10. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S.: 1983,Cell,35, 849–857.Google Scholar
  11. Joyce, G. F. and Orgel, L. E.: 1986,J. Mol. Biol. 188, 433–441.Google Scholar
  12. Joyce, G. F., Schwartz, A. W., Miller, S. L. and Orgel, L. E.: 1987,Proc. Natl. Acad. Sci. U. S. A. 84, 4398–4402.Google Scholar
  13. Hill, A. R., Kumar, S., Leonard, N. J. and Orgel, L. E.: 1988,J. Mol. Evol. 27, 91–95.Google Scholar
  14. Maurel, M. C. and Ninio, J.: 1987,Biochimie. 69, 551–553.Google Scholar
  15. Maurel, M. C. and Convert, O.: 1990,Origins of Life 20, 43–48.Google Scholar
  16. Maurel, M. C. and Décout, J. L.:1992,J. Mol. Evol. 35, 190–195.Google Scholar
  17. Orgel, L. E.: 1968,J. Mol. Biol. 38, 381–393.Google Scholar
  18. Orgel, L. E.: 1987,Cold. Spring. Harb. Symp. Quant. Biol. 52, 9–16.Google Scholar
  19. Orgel, L. E.: 1986,J. Theor. Biol. 123, 127–149.Google Scholar
  20. Orgel, L. E.: 1992,Nature. 358, 203–209.Google Scholar
  21. Paecht-Horowitz, M. and Katchalsky, A.: 1973,J. Mol. Evol. 2, 91.Google Scholar
  22. Reddy, D. M., Crain, P. F., Edmonds, C. G., Gupta, R., Hashizume, T., Stetter, K. O., Widdel, F., and McCloskey, J. A.: 1992,Nucleic Acids Research,21, 5607–5615.Google Scholar
  23. Trémolières, A.: 1980,Biochimie,62, 493–496.Google Scholar
  24. Uhlenbeck, O. C.: 1987,Nature,328, 596.Google Scholar
  25. Wächtershäuser, G.: 1988,Proc. Natl. Acad. Sci. U. S. A. 85, 1134–1135.Google Scholar
  26. White, H. B.: 1976,J. Mol. Evol. 7, 101–104.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Jean-Luc Décout
    • 1
  • Marie-Christine Maurel
    • 2
  1. 1.L.E.D.S.S.6., Univ. J. FourierGrenoble CedexFrance
  2. 2.Inst. Jacques MonodParis Cedex 05France

Personalised recommendations