Origins of life and evolution of the biosphere

, Volume 24, Issue 1, pp 63–78 | Cite as

Enantioselective autocatalysis. Spontaneous resolution and the prebiotic generation of chirality

  • William A. Bonner


Theoretical and experimental models for autocatalytic systems leading to the prebiotic origin of chiralityvia the spontaneous symmetry breaking (resolution) of racemic substrates are reviewed. Of the experimental models so far studied, only 2nd order assymetric transformations during crystallization of optically labile enantiometers, leading to their spontaneous resolution under racemizing conditions (SRURC) have been successful. Our objective was to investigate in further detail the most promising of these systems from the point of view of its overall efficiency and its potential viability as a mechanism for the spontaneous generation of molecular chirality on the prebiotic Earth. To this end the 1,4-benzo-diazepinooxazole derivative XI, having a single asymmetric carbon atom, has been synthesized. We here confirm a report in the literature that (±)-XI undergoes SRURC in methanol, both on crystallization and as a slurry. The ‘total spontaneous resolution’ of (±)-XI has been achieved in a yield of 99%, of which 80% had an optical purity ofca. 93%. Arguments are presented that SRURC of racemic substrates, while thus demonstrably effective in laboratory experiments, was probably not of major importance for the origin or amplification of molecular chirality on the primitive earth.


Crystallization Geochemistry Carbon Atom Experimental Model Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, L. F.: 1988,J. Mol. Evol. 27, 114.Google Scholar
  2. Alberts, A. H. and Wynberg, H.: 1989,J. Am. Chem. Soc. 111, 7265.Google Scholar
  3. Anikin, S. A. and Arinstein, A. E.: 1989,Origins Life Evol. Biosphere 19, 299.Google Scholar
  4. Avetisov, V. A., Anikin, S. A., Goldanskii, V. I., and Kuzmin, V. V.: 1985,Dokl. Akad. Nauk SSSR — Biophys. 282, 115.Google Scholar
  5. Avetisov, V. A., Goldanskii, V. I., and Kuzmin, V. V.: 1991a,Physics Today 44, 33.Google Scholar
  6. Avetisov, V. A., Goldanskii, V. I., Grechukha, S. N., and Kuzmin, V. V.: 1991b,Chem. Phys. Lett. 184, 526.Google Scholar
  7. Babovic, V., Gutman, I., and Jokic, S.: 1987,Z. Naturforsch. A. 42, 1024.Google Scholar
  8. Baker, W., Gilbert, B., and Ollis, W. D.: 1952,J. Chem. Soc. 1443.Google Scholar
  9. Bernal, I.: 1985,Inorg. Chim. Acta 96, 99.Google Scholar
  10. Bonner, W. A.: 1988, in Eliel, E. L. and Wilen, S. H. (eds.),Topics in Stereochemistry Vol. 18, John Wiley & Sons, New York, pp. 1–96.Google Scholar
  11. Bonner, W. A.: 1991,Origins Life Evol. Biosphere 21, 59–111.Google Scholar
  12. Bonner, W. A.: 1992a,Origins Life Evol. Biosphere 21, 407–420.Google Scholar
  13. Bonner, W. A.: 1992b, Chemistry and Industry, Number 17, 7 September, 640.Google Scholar
  14. Boyle, Jr., W. J., Sifniades, S., and Van Peppen, J. F.: 1979,J. Org. Chem. 44, 4841.Google Scholar
  15. Buvet, R.: 1977,Origins of Life 8, 267.Google Scholar
  16. Calvin, M.: 1969,Chemical Evolution, Oxford University Press, Oxford; pp. 149–152.Google Scholar
  17. Cattani, M. and Tome, X: 1993,Origins Life Evol. Biosphere 23, 125.Google Scholar
  18. Chela-Flores, J.: 1991,Chirality 3, 389.Google Scholar
  19. Chyba, C. F.: 1990a,Nature 343, 129.Google Scholar
  20. Chyba, C. F.: 1990b,Nature 348, 113.Google Scholar
  21. Collet, A., Brienne, M. J., and Jacques, J.: 1980,Chem. Rev. 80, 215.Google Scholar
  22. Czege, J. and Fajszi, C.: 1977,Origins of Life 8, 271.Google Scholar
  23. Decker, P.: 1973a,J. Mol. Evol. 2, 137.Google Scholar
  24. Decker, P.: 1973b,Nature (London) 241, 72.Google Scholar
  25. Decker, P.: 1974,J. Mol. Evol. 4, 49.Google Scholar
  26. Decker, P.: 1975,Origins of Life 6, 211.Google Scholar
  27. Decker, P.: 1977, in Walker, D. C. (ed.),Origins of Optical Activity in Nature, Elsevier, New York, pp. 109–124.Google Scholar
  28. Dyson, F. J.: 1982,J. Mol. Evol. 18, 344.Google Scholar
  29. Fajszi, C. and Czege, J.: 1981,Origins of Life 11, 143.Google Scholar
  30. Ferracin, A.: 1982,J. Theor. Biol. 94, 517.Google Scholar
  31. Figureau, A., Duval, E., and Boukenter, A.: 1992,Lycen 9244, November.Google Scholar
  32. Frank, F. C.: 1953,Biochem. Biophys. Acta 11, 459.Google Scholar
  33. Gillard, R. D. and Wimmer, F. L.: 1978,J. Chem. Soc. Chem. Commun., 936.Google Scholar
  34. Goldanskii, V. I.: 1988,Wiss. Fortschr. 38, 188.Google Scholar
  35. Goldanskii, V. I. and Kuzmin, V. V.: 1988,Z. Phys. Chem. 269, 216.Google Scholar
  36. Goldanskii, V. I. and Kuzmin, V. V.: 1991,Nature 352, 114.Google Scholar
  37. Goldanskii, V. I., Avetisov, V. A., and Kuzmin, V. V.: 1986,FEBS 207, 181.Google Scholar
  38. Goldanskii, V. I., Anikin, S. A., Avetisov, V. A., and Kuzmin, V. V.: 1987,Comments Mol. Cell. Biophys. 4, 79.Google Scholar
  39. Gutman, I. and Klemm, A.: 1987,Z. Naturforsch. A 42, 899.Google Scholar
  40. Gutman, I., Babovic, V., and Jokic, S.: 1988a,Chem. Phys. Lett. 144, 187.Google Scholar
  41. Gutman, I., Babovic, V., and Jokic, S.: 1988b,J. Serb. Chem. Soc. 53, 79.Google Scholar
  42. Harris, M. M.: 1958,Progr. Stereochem. 2, 159.Google Scholar
  43. Harrison, L. G.: 1973,J. Theor. Biol. 39, 334.Google Scholar
  44. Harrison, L. G.: 1974,J. Mol. Evol. 4, 99.Google Scholar
  45. Harrison, L. G.: 1977, in Walker, D. C. (ed.),Origins of Optical Activity in Nature, Elsevier, New York, pp. 125–140.Google Scholar
  46. Havinga, E.: 1941,Chemisch Weekblad 38, 642; 1942,Chem. Abstr. 36, 5790.Google Scholar
  47. Havinga, E.: 1952,Biochim. Biophys. Acta 13, 171.Google Scholar
  48. Hochstim, A. R.: 1975,Origins of Life 6, 317.Google Scholar
  49. Hutchins, L. G. and Pincock, R. E.: 1980,J. Org. Chem. 45, 2414.Google Scholar
  50. Hutchins, L. G. and Pincock, R. E.: 1982,J. Org. Chem. 47, 607.Google Scholar
  51. Iwamoto, K. and Seno, M.: 1979,J. Chem. Phys. 70, 5858.Google Scholar
  52. Jacques, J., Collet, A., and Wilen, S. H.: 1981a,Enantiomers, Racemates and Resolutions, Wiley, New York, pp. 430–434; 1981b, pp. 369–373.Google Scholar
  53. Job, R. C.: 1977,Chem. Soc., Chem. Commun., 258.Google Scholar
  54. Jones, P. E. and Katz, L.: 1969,Acta Crystallogr. B25, 745.Google Scholar
  55. Jungwirth, P. and Gutman, I.: 1991,J. Serb. Chem. Soc. 56, 253.Google Scholar
  56. Keszthelyi, L.: 1987,BioSystems 20, 15.Google Scholar
  57. King, G. A. M.: 1977,Origins of Life 8, 39.Google Scholar
  58. King, G. A. M.: 1978,Chem. Soc. Rev. 7, 297.Google Scholar
  59. Kipping, F. S. and Pope, W. J.: 1898,J. Chem. Soc. 73, 606.Google Scholar
  60. Klemm, A.: 1985,Z. Naturforsch. A 40, 1231.Google Scholar
  61. Kondepudi, D. K.: 1989,Z. Phys. Chem. (Leipzig) 270, 843.Google Scholar
  62. Kondepudi, D. K. and Nelson, G. W.: 1983,Phys. Rev. Lett. 50, 1023.Google Scholar
  63. Kondepudi, D. K., Kaufman, R. J., and Singh, N.: 1990,Science 250, 975.Google Scholar
  64. Kondepudi, D. K., Prigogine, I., and Nelson, G.: 1985,Phys. Lett. A 111, 29.Google Scholar
  65. Kondepudi, D. K., Bullock, K. L., Digits, J. A., Hall, J. K., and Miller, J. M.: 1993,J. Am. Chem. Soc. (In Press).Google Scholar
  66. Kress, R. B., Duesler, E. N., Etter, M. C., Paul, I. C., and Curtin, D. Y.: 1980,J. Am. Chem. Soc. 102, 7709.Google Scholar
  67. Kuroda, R. and Mason, S. F.: 1981,J. Chem. Soc. Perkin II, 167.Google Scholar
  68. Lawton, D. and Powell, H. M.: 1958,J. Chem. Soc. 2339.Google Scholar
  69. Lu, M. D. and Pincock, R. E.: 1978,J. Org. Chem. 43, 601.Google Scholar
  70. Martin, R. H. and Marchant, M. J.: 1974,Tetrahedron 30, 347.Google Scholar
  71. Miyadera, T., Terada, A., Fukunaga, M., Kawano, Y., Kamioka, T., Tamura, C., Takagi, H., and Tachikawa, R.: 1971,J. Med. Chem. 14, 520.Google Scholar
  72. Miyadera, T., Terada, A., Tamura, C., Yoshimoto, M., and Tachikawa, R.: 1976,Ann. Rep. Sankyo Res. Lab. 28, 1.Google Scholar
  73. Micheau, J. C., de Min, M., and Gimenez, M.: 1987,BioSystems 20, 85.Google Scholar
  74. Newman, A. C. D. and Powell, H. M.: 1952,J. Chem. Soc. 3747.Google Scholar
  75. Okada, Y. and Takebayashi, T.: 1988,Chem. Pharm. Bull. 36, 3787.Google Scholar
  76. Okada, Y., Takebayashi, T., and Sato, S.: 1989,Chem. Pharm. Bull. 37, 5.Google Scholar
  77. Okada, Y., Takebayashi, T., Seiichi, A., and Sato, S.: 1990,Heterocycles 31, 1923.Google Scholar
  78. Okada, Y., Takebayashi, T., Hashimoto, M., Kasuga, S., Sato, S., and Tamura, C.: 1983,J. Chem. Soc. Chem. Commun., 784.Google Scholar
  79. Pincock, R. E. and Wilson, K. R.: 1971,J. Am. Chem. Soc. 93, 1291.Google Scholar
  80. Pincock, R. E., Bradshaw, R. P., and Perkins, R. R.: 1974,J. Mol Evol. 4, 67.Google Scholar
  81. Pincock, R. E., Lu, M. D., and Fung, F.: 1981, In Wolman, Y. (ed.),Origin of Life, Kluwer Acad. Publ., Dordrecht, Holland; pp. 347–353.Google Scholar
  82. Pincock, R. E., Perkins, R. R., Ma, A. S., and Wilson, K. R.: 1971,Science 174, 1018.Google Scholar
  83. Powell, H. M.: 1952,Nature 170, 155.Google Scholar
  84. Powell, H. M: 1956,Endeavor 15, 20.Google Scholar
  85. Salam, A.: 1991,J. Mol. Evol 33, 105.Google Scholar
  86. Schlenk, Jr., W.: 1952a,Experientia 8, 337.Google Scholar
  87. Schlenk, Jr., W.: 1952b,Analyst 77, 867.Google Scholar
  88. Selig, F. F.: 1971a,J. Theor. Biol. 31, 355.Google Scholar
  89. Selig, F. F.: 1971b,J. Theor. Biol 32, 93.Google Scholar
  90. Selig, F. F.: 1972,J. Theor. Biol. 34, 197.Google Scholar
  91. Sifniades, S., Boyle, Jr., W. J., and Van Peppen, J. F.: 1976,J. Am. Chem. Soc. 98, 3738.Google Scholar
  92. Soret, C.: 1901,Z. Kristallogr. 34, 630;Chem. Zentral-Blatt II, 62.Google Scholar
  93. Sternbach, L. H., Fryer, R. I., Metlesics, W., Sach, G., and Stempel, A.: 1962a,J. Org. Chem. 27, 3781.Google Scholar
  94. Sternbach, L. H., Fryer, R. I., Metlesics, W., Reeder, E., Sach, G., Saucy, G., and Stempel, A.: 1962b,J. Org. Chem. 27, 3788.Google Scholar
  95. Strong, W. M.: 1898,Nature 59, 53.Google Scholar
  96. Szamosi, J.: 1985,Origins of Life 16, 165.Google Scholar
  97. Tennakone, K.: 1990,Origins Life Evol. Biosphere 20, 515.Google Scholar
  98. Tennakone, K. and Vitharana, L. P. M. P.: 1993,Origins Life Evol Biosphere 23, 137.Google Scholar
  99. Van Mil, J., Addadi, L., Lahav, M., Boyle, Jr., W. J., and Sifniades, S.: 1987,Tetraheron 43, 1281.Google Scholar
  100. Waldrop, M. M.: 1990a,Science 247, 1543.Google Scholar
  101. Waldrop, M. M.: 1990b,Science 250, 1078.Google Scholar
  102. Wilson, K. R. and Pincock, R. E.: 1975,J. Am. Chem. Soc. 97, 1474.Google Scholar
  103. Wilson, K. R. and Pincock, R. E.: 1977,Can. J. Chem. 55, 589.Google Scholar
  104. Wynberg, H.: 1989a,Chimia 43, 150.Google Scholar
  105. Wynberg, H.: 1989b,J. Macromol. Sci. — Chem. A 26, 1033.Google Scholar
  106. Wynberg, H. and Groen, M. B.: 1968,J. Am. Chem. Soc. 90, 5339.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • William A. Bonner
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations