Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin

  • T. Arrhenius
  • G. Arrhenius
  • W. Paplawsky


The sources and speciation of reduced carbon and nitrogen inferred for the early Archean are reviewed in terms of current observations and models, and known chemical reactions. Within this framework hydrogen cyanide and cyanide ion in significant concentration would have been eliminated by reaction with excess formaldehyde to form cyanohydrin (glycolonitrile), and with ferrous ion to form ferrocyanide. Natural reactions of these molecules would under such conditions deserve special consideration in modeling of primordial organochemical processes.

As a step in this direction, transformation reactions have been investigated involving glycolonitrile in the presence of water. We find that glycolonitrile, formed from formaldehyde and hydrogen cyanide or cyanide ion, spontaneously cyclodimerizes to 4-amino-2-hydroxymethyloxazole. The crystalline dimer is the major product at low temperature (∼0 °C); the yield diminishes with increasing temperature at the expense of polymerization and hydrolysis products. Hydrolysis of glycolonitrile and of oxazole yields a number of simpler organic molecules, including ammonia and glycolamide. The spontaneous polymerization of glycolonitrile and its dimer gives rise to soluble, cationic oligomers of as yet unknown structure, and, unless arrested, to a viscous liquid, insoluble in water.

A loss of cyanide by reaction with formaldehyde, inferred for the early terrestrial hydrosphere and cryosphere would present a dilemma for hypotheses invoking cyanide and related compounds as concentrated reactants capable of forming biomolecular precursor species. Attempts to escape from its horns may take advantage of the efficient concentration and separation of cyanide as solid ferriferrocyanide, and most directly of reactions of glycolonitrile and its derivatives.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H.: 1966,Proc. Natl. Acad. Sci. USA 55, 1365.Google Scholar
  2. Alfvén, H. and Arrhenius, G.: 1976,Evolution of the Solar System, NASA SP-345, U.S. Government Printing Office, Washington D.C., 596 pp.Google Scholar
  3. Arrhenius, G.: 1990, ‘Sources and geochemical evolution of cyanide and formaldehyde.’ In Fourth Symposium of Chemical Evolution, July 24–27, 1990, NASA Ames Research Center, 31–32, S.E. Bzik, ed.Google Scholar
  4. Arrhenius, G., Gedulin, B., and Mojzsis, S.: 1993: ‘Phosphate in models for chemical evolution.’ In Proceedings, Conference on Chemical Evolution and the Origin of Life, Trieste, Italy, Oct. 1992, J. Chela-Flores, C. Ponnamperuma, eds., A. Deepak Publishing, Hampton, VA, in press.Google Scholar
  5. Canuto, V. M., Levine, J. S., Augustsson, T. R., Imhoff, C. L., and Giampapa, M. S.: 1983,Nature 305,281–286.Google Scholar
  6. Chaizy, P., Rème, H., Sauvaud, J. A., d'Uston, C., Lin, R. P., Larson, D. E., Mitchell, D. L., Anderson, K. A., Carlson, C. W., Korth, A., and Mendis, D. A.: 1991,Nature 349, 393.Google Scholar
  7. Chang, S., DesMarais, D., Mack, R., Miller, S. L., and Strathearn, G. E.: 1983, ‘Prebiotic organic syntheses and the origin of life.’ InEarth's Earliest Biosphere, J. W. Schopf, ed., Princeton University Press, Princeton, N. J., 53–92.Google Scholar
  8. Chyba, C. F, Thomas, P. J., Brookshaw, L., and Sagan, C.: 1990,Science 249, 366–373.Google Scholar
  9. Chyba, C. F. and Sagan, C.: 1992,Nature 355, 125–132.Google Scholar
  10. Fälthammar, C. G.: 1991,Geofisica Internacional 30, 197–211.Google Scholar
  11. Ferris, J. P. and Nicodem, D. E.: 1972,Nature 238, 268–269.Google Scholar
  12. Ferris, J. P. and Hagan, W. J., Jr.: 1984,Tetrahedron Ltrs. 20, 1093–1120.Google Scholar
  13. Ferris, P. J., Yanagawa, H., Dudgeon, A. P., Hagan, W. J., Jr., and Mallare, T. E.: 1984,Orig. Life 15, 29–43.Google Scholar
  14. Gahm, G. F.: 1990, ‘Star formation after core collapse.’ In Formation of the Stars and Planets and the evolution of the Solar System, Proc. 24th ESLAB Symp. ESA SP-315, 43–51.Google Scholar
  15. Gedulin, G., and Arrhenius, G.: 1993, ‘Sources and geochemical evolution of RNA precursor molecules; the role of phosphate.’ In Early Life on Earth, Proc. Proc. Nobel Symposium 84, Björkborn, Sweden, May 16–21, 1992, S. Bengtson, ed., Columbia Univ. Press, in press.Google Scholar
  16. Graedel, T. E., Sackman, I. J., and Boothroyd, A. I.: 1991,Geophys. Res. Ltrs. 18, 1881–1884.Google Scholar
  17. Groth, W. and Weyssenhoff, H.: 1960,Planet. Space Sci. 2, 79.Google Scholar
  18. Hill, R. D.: 1992,Origins of Life and Evol. of the Biosphere 22, 277–285.Google Scholar
  19. Hubbard, J. S., Hardy, J. P., and Horowitz, N. H.: 1971,Proc. Natl. Acad. Sci. USA 68, 574–578.Google Scholar
  20. Jammot, J., Pascal, R., and Commeyras, A.: 1990, J. Chem. Soc, 157–162.Google Scholar
  21. Kane, T. J. and Gardner, C. S.: 1993,Science 259, 1297–1300.Google Scholar
  22. Kasting, J. F., Zahnle, K. J., and Walker, J. C. G.: 1983,Precambrian Res. 20, 121–148.Google Scholar
  23. Kasting, J. F., Pollack, J. B., and Crisp, D.: 1984,J. Atm. Chem. 1, 403–428.Google Scholar
  24. Kasting, J. F.: 1993:Science 259, 920–925.Google Scholar
  25. Kuhn, W. R. and Atreya, S. K.: 1979,Icarus 37, 207–213.Google Scholar
  26. Lake, D. B. and Londergan, T. E.: 1954,J. Org. Chem. 19, 2004–2007.Google Scholar
  27. Melton, C. E. and Ropp, G.: 1958,J. Am. Chem. Soc. 90, 5573.Google Scholar
  28. Miyamoto, M., Samo, Y., Kimura, Y., and Saegusa, T.: 1985,Macromolecules 18, 1641–1648.Google Scholar
  29. Orgel, L. E.: 1974, ‘Sedimentary minerals under reducing conditions’ InThe Origin of Life and Evolutionary Biochemistry, K. Dose, et al., eds. Plenum Publishing Corp., New York, 369–371.Google Scholar
  30. Oró, J.: 1960,Biochem. Biophys. Res. Communications 2, 407–412.Google Scholar
  31. Oró, J. and Kimball, P. A.: 1961,Arch. Biochem. and Biophys. 94, 217–227.Google Scholar
  32. Oró, J., Miller, S. L., and Lazcano, A.: 1990,Ann. Rev. Earth Planet, Sci. 18, 317–356.Google Scholar
  33. Pinto, J. P., Gladstone, G. R., and Yung, Y. L.: 1980,Science 210, 183–185.Google Scholar
  34. Pitsch, S., Eschenmoser, A. E., Gedulin, B., Hui, S. Y., and Arrhenius, G.: 1993, Helv. Chim. Acta, in prep.Google Scholar
  35. Saegusa, T. and Kobayashi, S.: 1986, ‘Polymerization of 2-oxazolines.’ Makromol. Chem., Macromol. Symp., The Hague, The Netherlands, Aug. 18–23, 1985, ed. M. Mandel1, 23–37.Google Scholar
  36. Schlesinger, G. and Miller, S. L.: 1973,J. Am. Chem. Soc. 95, 3729–3735.Google Scholar
  37. Schwartz, A. W. and Goverde, M.: 1982,J. Mol. Evol. 18, 351–353.Google Scholar
  38. Schwartz, A. W. and Henderson-Sellers, A.: 1983,Precambrian Research 22, 167–174.Google Scholar
  39. Shen, C. Y. and Nordquist, P. E., Jr.: 1974,Ind. Eng. Chem. Prod. Res. Dev. 13, 70–75.Google Scholar
  40. Southgate, B. A.: 1933,The Gas World 99, 14–17.Google Scholar
  41. Stribling, R. and Miller, S. L.: 1987,Orig. Life 17, 261–273.Google Scholar
  42. Thompson, W. R., Henry, T., Khare, B. N., Flynn, L., Schwartz, J., and Sagan, C.: 1987,J. Geophys.Res. 92, 15083–15092.Google Scholar
  43. Thompson, W. R., Sushil, K. S., Khare, B. N., and Sagan, C.: 1989a,Geophys. Res. Ltrs. 16, 981–984.Google Scholar
  44. Thompson, W. R., Henry, T., Schwartz, J., Khare, B. N., and Sagan, C.: 1989b,Icarus 90, 57–73.Google Scholar
  45. Wasson, J. T. and Kyte, F. T.: 1987,Geophys. Res. Ltrs. 14, 779.Google Scholar
  46. Wing, M. R. and Bada, J. L.:1990,Geol. Soc. Am. Ann. Mtg., Dallas, TX, Oct 29–Nov 1, 1990Google Scholar
  47. Zahnle, K. J.: 1986,J. Geophys. Res. 91, 2819–2834.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • T. Arrhenius
    • 1
  • G. Arrhenius
    • 2
  • W. Paplawsky
    • 2
  1. 1.Cytet CorporationLa Jolla
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations