Origins of life and evolution of the biosphere

, Volume 24, Issue 5, pp 389–423

Chemistry of potentially prebiological natural products

  • Albert Eschenmoser


A relationship between what might be called a kinetic version of Le Chatelier's principle and chemical self-organization is considered. Some aspects of the search for a pre-RNA genetic system are discussed. Results of an experimental investigation on the pairing properties of alternative nucleic acid systems — including those of pyranosyl-RNA (‘p-RNA’), a constitutional isomer of RNA — are summarized.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baranoski. B.: 1989, ‘Dissipative Strukturen als ein energetisches Problem’, Nova Ada Leopoldina NF 60, Nr. 265,91.Google Scholar
  2. Böhringer, M., Roth,, H-J., Hunziker, J., Göbel, M., Krishnan, R., Giger, A., Schweizer, B., Schreiber, J., Leumann, C, and Eschenmoser, A.: 1992, ‘Why Pentose and Not Hexose Nucleic Acids? Part II. Preparation of Oligonucleotides Containing 2′,3′-Dideoxy-β-D-glucopyranosyl Building Bocks’,Helv. Chim. Acta 75, 1416.Google Scholar
  3. Cairns-Smith, A. G.: 1982, ‘Genetic Takeover and the Mineral Origins of Life’, Cambridge University Press, Cambridge.Google Scholar
  4. de Duve, C: 1991, ‘Blueprint for a Cell. The Nature and Origin of Life’, Neil Patterson Publishers, Burlington, North Carolina.Google Scholar
  5. Diederichsen, U.: 1993, ‘A. Hypoxanthin-Basenpaarungen in Homo-DNA-Oligonucleotiden. B. Zur Frage des Paarungsverhaltens von Glucopyranosyl-Oligonucleotiden’, Thesis No. 10122, ETH Zürich.Google Scholar
  6. Dingra, M. M. and Sarma, R. H.: 1978, ‘Why do Nucleic Acids Have 3′,5′-phosphodiester Bonds?’,Nature 272, 798.Google Scholar
  7. Drenkard, S., Ferris, J. P., and Eschenmoser, A.: 1990, ‘Chemistry of α-Aminonitriles. Aziridine-2-carbonitrile: Photochemical Formation from 2-Aminopropenenitrile’,Helv. Chim. Ada 73, 1373.Google Scholar
  8. Eigen, M: 1971, ‘Selforganization of Organic Matter and the Evolution of Biological Macro-molecules’,Naturwissenschaften 58, 465.Google Scholar
  9. Eigen, M. and Schuster, P.: 1977, ‘The Hypercycle, a Prinicple of Natural Self-Organisation’, Part A,Naturwissenschaften 64, 541.Google Scholar
  10. Eigen, M. and Schuster, P.: 1978, ‘The Hypercycle, a Principle of Natural Self-Organisation’, Part B,Naturwissenschaften 65, 7; Part C, Naturwissenschaften 65, 341.Google Scholar
  11. Eschenmoser, A.: 1988, ‘Vitamin B12: Experiments Concerning the Origin of Its Molecular Structure’,Angew. Chem. Int. Ed. Engl. 27, 5.Google Scholar
  12. Eschenmoser, A.: 1991, ‘Warum Pentose- und nicht Hexose-Nucleinsäuren?’,Nachr. Chem. Tech. Lab. 39, 795.Google Scholar
  13. Eschenmoser, A.: 1993, ‘Towards a Chemical Etiology of the Natural Nucleic Acids' Structure’, in Proceedings of the R. A. Welch Foundation Conference on Chemical Research XXXVII: ‘40 Years of the DNA Double Helix’, A. Welch Foundation, Houston, p. 201.Google Scholar
  14. Eschenmoser, A. and Dobler, M.: 1992, ‘Why Pentose- and Not Hexose Nucleic Acids? Part I. Introduction to the Problem, Conformational Analysis of Oligonucleotide Single Strands Containing 2′,3′-Dideoxyglucopyranosyl Building Blocks (‘Homo-DNA ’), and Reflections on the Conformation of A- and B- DNA’,Helv. Chim. Acta 75, 218.Google Scholar
  15. Eschenmoser, A. and Loewenthal, E.: 1992, ‘ Chemistry of Potentially Prebiological Natural Products’,Chem. Soc. Rev. 21, 1.Google Scholar
  16. Ferris, J. P., Hagan, W. J., 1984, ‘HCN and Chemical Evolution: The Possible Role of Cyano Compounds in Prebiotic Synthesis’ Tetrahedron 40, 1093.Google Scholar
  17. Fischer, R. W.: 1992, ‘Allopyranosyl-Nukleinsäure: Synthese, Paarungseigenschaften und Struktur von Adenin-/Uracil-haltigen Oligonukleotiden’, Thesis No. 9971, ETH Zürich.Google Scholar
  18. Giger, A.: 1992, ‘Untersuchungen fiber Oligonucleotide mit 2-Deoxy-D-ribose, 2,3-dideoxy-D-glucopyranose und D-allopyranose als Zuckerbausteine’, Thesis No. 9975, ETH Zürich.Google Scholar
  19. Glansdorff, P. and Prigogine, I.: 1971, ‘Thermodynamic Theory of Structure, Stability and Fluctuations’, Wiley-Interscience Publ.Google Scholar
  20. Gray, H. B. and Haight, G. P.: 1967, ‘Basic Principles of Chemistry’, W. A. Benjamin Inc., New York, p. 365.Google Scholar
  21. Groebke, R.: 1993, ‘Über Purin-Purin-Paarungen bei Hexopyranose-Nukleinsäuren’, Thesis No. 10149, ETH Zurich.Google Scholar
  22. Haken, H.: 1981, ‘Erfolgsgeheimnisse in der Natur. Synergetik: Die Lehre vom Zusammenwirken’, Deutsche Verlags-Anstalt GMbH., Stuttgart.Google Scholar
  23. Hammer, R.: 1992, unpublished work, ETH.Google Scholar
  24. Helg, A. G.: 1994, ‘Allopyranosyl-Nukleinsäure: Synthese, Paarungseigenschaften und Struktur von Guanin-/Cytosin-enthaltenden Oligonukleotiden’, Thesis No. 10464, ETH Zürich.Google Scholar
  25. Hunziker, J., Roth, H.-J., Böhringer, M., Giger, A., Diederichsen, U., Göbel, M., Krishnan, R., Jaun, B., Leumann, C, and Eschenmoser, A.: 1993, ‘Why Pentose- and Not Hexose-Nucleic Acids? Part III. Oligo(2′,3′-dideoxy-β-D-glucopyranosyl)nucleotides. (‘Homo-DNA’): Base-Pairing Properties ’,Helv. Chim. Ada 76, 259.Google Scholar
  26. Jacob, F.: 1982, ‘The Possible and the Actual’, Pantheon Books, New York.Google Scholar
  27. Jin, R., Chapman, W. H., Srinivasan, A. R., Olson, W. K., Breslow, R., and Breslauer, K. J.: 1993, ‘ Comparative spectroscopic calorimetric and computational studies of nucleic acid complexes with 2′,5″- versus 2′,5″-phosphodiester linkages’,Proc. Natl. Acad. Sci. USA 90, 10568.Google Scholar
  28. Joyce, G. F. and Orgel, L. E.: 1993, ‘Origin of the RNA World’, in: Gesteland, R. F. and Atkins, J. F. (eds.), ‘The RNA World’, Cold Spring Harbour Laboratory Press, p. 1.Google Scholar
  29. Joyce, G. F., Schwartz, A. W, Miller, S. L., and Orgel, L. E.: 1987, ‘A Case for an Ancestral Genetic System Involving Simple Analogues of the Nucleosides’,Proc. Natl. Acad. Sci. U.S.A. 84, 4398.Google Scholar
  30. Kauffman, S. A.: 1986, ‘Autocatalytic Sets of Proteins’,J. Theor. Biol. 119, 1.Google Scholar
  31. Kauffman, S. A.: 1993, ‘The Origins of Order. Self-Organization and Selection in Evolution’, Oxford University Press.Google Scholar
  32. Krishnamurthy, R.: 1993, unpublished work, ETH.Google Scholar
  33. Ksander, G., Bold, G., Lattmann, R., Lehmann, C, Früh, T., Xiang, Y.-B., Inomata, K., Buser H.-P., Schreiber, J., Zass, E., and Eschenmoser, A.: 1987, ‘ Chemistry of α-Aminonitriles I. Introduction and Pathways to Uroporphyrinogen-octanitriles’,Helv. Chim. Acta 70, 1115.Google Scholar
  34. Kuhn, H.: 1972, ‘Selforganization of Molecular Systems and Evolution of the Genetic Apparatus’,Angew. Chem. Int. Ed. Engl. 11, 798.Google Scholar
  35. Mayr, E.: 1974, ‘Teleological and Teleonomic, a New Analysis’, in Cohen, R. S. and Wartofsky, M. W. (eds.), Boston Studies in the Philosophy of Science, Vol. XIV, ‘Methodological and Historical Essays in the Natural and Social Sciences ’, D. Reidel Publ. Co., Dordrecht, Boston, p. 91.Google Scholar
  36. Miller, S. L. and Orgel, L. E.: 1974, ‘The Origins of Life on Earth’, Prentice-Hall Inc., Englewood Cliffs, N. J.Google Scholar
  37. Müller, D., Pitsch, S., Kittaka, A., Wagner, E., Wintner, C. E., and Eschenmoser, A.: 1990, ‘Chemistry of α-Amininitriles. Aldomerisation of Glycolaldehyde Phosphate to rac-Hexose 2,4,6-Triphosphates and (in Presence of Formaldehyde) rac-Pentose 2,4-Diphosphates: rac-Allose 2,4,6-Triphosphate and rac-Ribose 2,4-Diphosphate Are the Main Reaction Products’,Helv. Chim. Acta 73, 1410.Google Scholar
  38. Nicolis, G. and Prigogine, I: 1977, ‘Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order through Fluctuations’, Wiley-Interscience Publ. Orgel, L. E.: 1986, ‘RNA Catalysis and the Origin of Life’,J. Theor. Biol. 123, 127.Google Scholar
  39. Oro, J., 1960, ‘Synthesis of Adenine from Ammonium Cyanide’ Biochem. Biophys. Res. Comm2, 407.Google Scholar
  40. Otting, G., Billeter, M., Wüthrich, K., Roth, H.-J., Leumann, C, and Eschenmoser, A.: 1993, ‘Why Pentose- and Not Hexose-Nucleic Acids? Part IV. ‘Homo-DNA’: 1H-, 13C-,31P,- and 15N-NMR-Spectroscopie Investigation of ddGlc(A-A-A-A-A-T-T-T-T-T) in Aqueous Solution’,Helv. Chim. Acta 76, 2701.Google Scholar
  41. Peng,L.: 1993, ‘1. Synthese und Eigenschaften von Oligo-2′-deoxy-1 ′,2′-seco-D-ribonukleotiden. 2. Purin-Purin-gepaarte Oligonukleotide der homo-DNA-Reihe’, Thesis No. 10035, ETH Zurich.Google Scholar
  42. Pitsch, S., Wendeborn, S., Jaun, B., and Eschenmoser, A.: 1993, ‘Why Pentose- and Not Hexose-Nucleic Acids? Part VII. Pyranosyl-RNA (‘p-RNA’)’,Helv. Chim. Acta 76, 2161.Google Scholar
  43. Pitsch, S., Pombo-Villar, E., and Eschenmoser, A.: 1994, ‘Chemistry of α-Aminonitriles, Part 13. On the Formation of Glycolaldehyde Phosphate Esters from Oxirane Carbonitrile — and on a (so far formal) Constitutional Relationship Between bis-Glycolaldehyde Phosphate and Pyranosyl-Oligonucleotide Backbones’, Helv. Chim. Acta (in press).Google Scholar
  44. Pittendrigh, C. S.: 1958, ‘Behaviour and Evolution’, in Roe, A. and Simpson, G. G. (eds.), Yale University Press, New Haven.Google Scholar
  45. Prigogine, I.: 1945, ‘Moderation et transformations irr éversibles des systémes ouverts’,Bull. Cl. Sci. Acad. R. Belg. 31, 600.Google Scholar
  46. Prigogine, I.: 1978, ‘Time, Structure, and Fluctuations’,Science 201, 777.Google Scholar
  47. Prigogine, I. and Nicolis, G.: 1967, ‘On Symmetry-Breaking Instabilities in Dissipative Systems’,J. Chem. Phys. 46, 3542.Google Scholar
  48. Usher, D. A.: 1972, ‘RNA Double Helix and the Evolution of the 3′5′-Linkage’,Nature 235, 207.Google Scholar
  49. Usher, D. A.: 1977, ‘Early Chemical Evolution of Nucleic Acids: A Theoretical Model’,Science 196, 311.Google Scholar
  50. Wächtershäuser, G.: 1990, ‘Evolution of the First Metabolic Cycles’,Proc. Natl. Acad. Sci. USA 87, 200.Google Scholar
  51. Wagner, E., Xiang, Yi-Bin, Baumann, K., Gück, J., and Eschenmoser, A.: 1990, ‘Chemistry of α-Aminonitriles. Aziridine-2-carbonitrile, a Source of Racemic-O3-Phosphoserinenitrile and Glycolaldehyde-Phosphate’,Helv. Chim. Acta 73, 1391.Google Scholar
  52. Westheimer, F. H.: 1987, ‘Why Nature Chose Phosphates’,Nature 235, 1173.Google Scholar
  53. Xiang, Yi-Bin, Drenkard, S., Baumann, K., Hickey, D., Felix, D., and Eschenmoser, A.: 1994, ‘Chemistry of α-Aminonitriles. Part 12. Exploratory Experiments on Thermal Reactions of α-Aminonitriles’, Helv. Chim. Acta (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Albert Eschenmoser
    • 1
  1. 1.Laboratory of Organic ChemistrySwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations