Origins of life and evolution of the biosphere

, Volume 23, Issue 1, pp 53–64

Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits

  • Helga Stan-Lotter
  • Michael Sulzner
  • Eva Egelseer
  • Cynthia F. Norton
  • Lawrence I. Hochstein


Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme fromHalobacterium saccharovorum with respect to subunit composition, enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthurton, R. S.: 1973,Sedimentology 20, 145–160.Google Scholar
  2. Bien, E. and Schwartz, W.: 1965,Z. Allg. Mikrobiol. 5, 185–205.Google Scholar
  3. Bradford, M. M.: 1976,Anal. Biochem. 72, 248–254.Google Scholar
  4. Dombrowski, H. J.: 1963,Ann. New York Acad Sci. 108, 477–484.Google Scholar
  5. Eimhjellen, K.: 1965,Zbl. Bakt., Parasitenk., Infekt., Hyg., Abt. 1, Suppl.1, 126–137.Google Scholar
  6. Fillingame, R. H.: 1990, inThe Bacteria, Vol XII, Bacterial Energetics, T. A. Krulwich, (ed.), Academic Press, San Diego.Google Scholar
  7. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., Manolson, M. F., Poole, R. J., Date, T., Oshima, T., Konishi, J., Denda, K., and Yoshida, M.: 1989,Proc. Natl. Acad. Sci. U.S.A. 86, 6661–6665.Google Scholar
  8. Harlow, E. and Lane, D.: 1988,Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.Google Scholar
  9. Hilpert, R., Winter, J., Hammes, W., and Kandler, O.: 1981,Zbl. Bakt. Hyg., I. Abt. Orig. C 2, 11–20.Google Scholar
  10. Hochstein, L. I., Kristjansson, H., and Altekar, W.: 1987,Biochem. Biophys. Res. Commun. 147, 295–300.Google Scholar
  11. Ihara, K. and Mukohata, Y.: 1991,Arch. Biochem. Biophys. 286, 111–116.Google Scholar
  12. Klaus, W.: 1974,Carinthia II, 164/Jahrg.84, 79–85, Klagenfurt.Google Scholar
  13. Klaus, W.: 1987,Einführung in die Pal äobotanik, Band I. F. Deuticke Verlag, Vienna.Google Scholar
  14. Kristjansson, H. and Hochstein, L. I.: 1985,Arch. Biochem. Biophys. 241, 590–595.Google Scholar
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J.: 1951,J. Biol. Chem. 193, 265–275.Google Scholar
  16. Nanba, T. and Mukohata, Y.: 1987,J. Biochem.102, 591–598.Google Scholar
  17. Norton, C. F. and Grant, W. D.: 1988,J. Gen. Microbiol. 134, 1365–1373.Google Scholar
  18. Norton, C. F.: 1988, Abstr. I-84, Annu. Meetg. Am. Soc. Microbiol., Am. Soc. Microbiol., Washington.Google Scholar
  19. Norton, C. F.: 1989, Abstr. I-108, Annu. Meetg. Am. Soc. Microbiol., Am. Soc. Microbiol., Washington.Google Scholar
  20. Pak, E. and Schauberger, O.: 1981,Verh. Geol. B.-A., Jahrg. 1981, 185–192.Google Scholar
  21. Reiser, R. and Tasch, P.:: 1960,Trans. Kansas Acad. Sci. 60, 31–34.Google Scholar
  22. Reistad, R.: 1970,Arch. Mikrobiol. 71, 353–360.Google Scholar
  23. Rippel, A.: 1935,Arch. Mikrobiol. 6, 350–358.Google Scholar
  24. Ross, H. N. M., Collins, M. D., Tindall, B. J., and Grant, W. D.: 1981,J. Gen. Microbiol. 123, 75–80.Google Scholar
  25. Ross, H. N. M., Grant, W. D., and Harris, J. E.: 1985, inChemical Methods in Bacterial Systematics, Goodfellow, M. and Minnekin, D. E., (eds.), Acad. Press, London, New York.Google Scholar
  26. Schinzel, R. and Burger, K. J.: 1984,FEMS Microbiol. Lett. 25, 187–190.Google Scholar
  27. Sonnenfeld, P.: 1984,Brines and Evaporites, Academic Press, Orlando, Florida.Google Scholar
  28. Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G.: 1989,Bergey's Manual of Systematic Bacteriology, Vol. 3. Willams and Wilkins, Baltimore.Google Scholar
  29. Stan-Lotter, H., and Hochstein, L. I.: 1989,Eur. J. Biochem. 179, 155–160.Google Scholar
  30. Stan-Lotter, H., Lang, F. J. Jr., and Hochstein, L. I.: 1989,Appl. Theoret. Electroph. 1, 147–153.Google Scholar
  31. Stan-Lotter, H., Bowman, E. J., and Hochstein, L. I.: 1991,Arch. Biochem. Biophys. 284, 116–119.Google Scholar
  32. Tomlinson, G. A. and Hochstein, L. I.: 1972,Can. J. Microbiol. 18, 698–701.Google Scholar
  33. Tomlinson, G. A. and Hochstein, L. I.: 1976,Can. J. Microbiol. 22, 587–591.Google Scholar
  34. Woese, C. R.: 1987,Microbiol. Rev. 51, 221–271.Google Scholar
  35. Woese, C. R. and Fox, G. E.: 1977,Proc. Natl. Acad. Sci. U.S.A. 74, 5088–5090.Google Scholar
  36. Woese, C. R., Kandler, O., and Wheelis, M. L.: 1990,Proc. Nat. Acad. Sci. U.S.A. 87, 4576–4579.Google Scholar
  37. Zharkov, M. A.: 1981,History of Paleozoic Salt Accumulation, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Helga Stan-Lotter
    • 1
    • 3
  • Michael Sulzner
    • 1
  • Eva Egelseer
    • 1
  • Cynthia F. Norton
    • 2
  • Lawrence I. Hochstein
    • 3
  1. 1.Institute of Microbiology and GeneticsUniversity of ViennaViennaAustria
  2. 2.Department of BiologyUniversity of Maine at AugustaMaineUSA
  3. 3.NASA Ames Research Center, Moffett FieldUSA

Personalised recommendations