Origins of life and evolution of the biosphere

, Volume 23, Issue 1, pp 37–52 | Cite as

Responses ofBacillus subtilis spores to space environment: Results from experiments in space

  • Gerda Horneck


Onboard of several spacecrafts (Apollo 16, Spacelab 1, LDEF), spores ofBacillus subtilis were exposed to selected parameters of space, such as space vacuum, different spectral ranges of solar UV-radiation and cosmic rays, applied separately or in combination, and we have studied their survival and genetic changes after retrieval. The spores survive extended periods of time in space — up to several years —, if protected against the high influx of solar UV-radiation. Water desorption caused by the space vacuum leads to structural changes of the DNA; the consequences are an increased mutation frequency and altered photobiological properties of the spores. UV-effects, such as killing and mutagenesis, are augmented, if the spores are in space vacuum during irradiation. Vacuum-specific photoproducts which are different from the ‘spore photoproduct’ may cause the synergistic response of spores to the simultaneous action of UV and vacuum. The experiments provide an experimental test of certain steps of the panspermia hypothesis.


Geochemistry Structural Change Spectral Range Experimental Test Extended Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrhenius, S.: 1903,Die Umschau 7, 481.Google Scholar
  2. Baltschukat, K. and Horneck, G.: 1991,Radiat. Environ. Biphys. 30, 87.Google Scholar
  3. Bücker, H. and Horneck, G.: 1969,Biophysik 6, 69.Google Scholar
  4. Bücker, H. and Horneck, G.: 1970,Life Sci. Space Res. 8, 33.Google Scholar
  5. Bücker, H., Horneck, G., Facius, R., Schwager, M., Thomas, C., Turcu, G., and Wollenhaupt, H.: 1972,Life Sci. Space Res. 10, 191.Google Scholar
  6. Bücker, H., Horneck, G., Wollenhaupt, H., Schwager, M., and Taylor, G. R.: 1974,Life Sci. Space Res. 12, 209.Google Scholar
  7. Bücker, H. and Horneck, G.: 1975, inRadiation Research, O. F. Nygaard, H. J. Adler, and W. K. Sinclair, (eds.), Academic Press, New York, p. 1138.Google Scholar
  8. Carignan, G. R. and Miller, E. R.: 1987,Adv. Space Res. 7(5), 153.Google Scholar
  9. Crick, F.: 1981,Life itself, its Origin and Nature, Simon and Schuster Publ., New York.Google Scholar
  10. Crowe, L. M. and Crowe, J. H.: 1992,Adv. Space Res. 12(4), 239.Google Scholar
  11. Dose, K.: 1986,Adv. Space Res. 6(12), 181.Google Scholar
  12. Dose, K., Bieger-Dose, A., Labusch M., and Gill, M.: 1992,Adv. Space res. 12(4), 221.Google Scholar
  13. Facius, R., Bücker, H., Hildebrand, D., Horneck, G., Höltz, G., Reitz, G., Schäfer, M., and Toth, B.: 1978,Life Sci. Space Res. 16, 151.Google Scholar
  14. Falk, M.: 1964,J. Am. Chem. Soc. 86, 1226.Google Scholar
  15. Fry, R. M.: 1966, inCryobiology, H. T., Meryman (ed.), Academic Press, p. 665.Google Scholar
  16. Gass, K. G., Hill, T. C., Goulian, M., Strauss, B. S., and Cozzarelli, N. R.: 1971,J. Bacteriol. 108, 364.Google Scholar
  17. Gould, G. W. and Hurst, A. (eds.): 1959,The Bacterial Spore, Academic Press, London.Google Scholar
  18. Grahn, D. (ed.): 1973,HZE-particles in manned spaceflight, Natl. Acad. Sci. Washington.Google Scholar
  19. Horneck, G.: 1992,Nucl. Tracks Radiat. Meas. 20, 185.Google Scholar
  20. Horneck, G., Facius, R., Enge, W., Beaujean, R., and Bartholomä K.-P.: 1974,Life Sci Space Res. 12, 75.Google Scholar
  21. Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K. D., Mennigmann, H. D., and Weber, P.: 1984a,Science 225, 226.Google Scholar
  22. Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K. D., Mennigmann, H. D., and Weber, P.: 1984b,Adv. Space Rev. 4 (10), 19.Google Scholar
  23. Horneck, G. and Brack, A.: 1992, inAdvances in Space Biology and Medicine, Vol.2, S. L. Bonting (ed.), JAI Press, Greenwich, CT, p. 229.Google Scholar
  24. Kerr, R. A.: 1987,Science,237, 721.Google Scholar
  25. Labs, D., Neckel, H., Simon, P. C., and Thuillier, G.: 1987,Solar Physics 107, 203.Google Scholar
  26. Lorenz, P., Hotchin, J., Markusen, A. S., Orlob, G. B., Hemenway, C. L., and Hallgren, D. S.: 1968,Space Life Sci. 1, 118.Google Scholar
  27. Lorenz, P., Orlob G. B., and Hemenway, C. L.: 1969,Space Life Sci. 1, 491.Google Scholar
  28. Melosh, H. J.: 1984,Icarus 59, 234.Google Scholar
  29. Melosh, H. J.: 1988,Nature 332, 687.Google Scholar
  30. Munakata N. and Rupert, C. S.: 1974,Molec. Gen. Genet. 130, 239.Google Scholar
  31. Nussinov, M. D. and Lysenko, S. V.: 1992,J. Brit. Interplanet. Soc. 45, 22.Google Scholar
  32. Okubo, S. and Yanagida, T.: 1968,J. Bacteriol. 95, 1187.Google Scholar
  33. Reitz, G.: 1975,Gravimetrische Messungen im Vakuum, Thesis, University of Frankfurt.Google Scholar
  34. Schäfer, M., Bücker, H., Facius, R., and Hildebrand, D.: 1977,Radiat. Effects 34, 129.Google Scholar
  35. Schwager, M.: 1973,Untersuchungen über die Ursachen der Inaktivierung und der erhöhten UV-Empfindlichkeit von Bakterien durch Vakuumbehandlung, Dissertation, University of Frankfurt.Google Scholar
  36. Stassinopoulos, E. G.: 1988, inTerrestrial Space Radiation and Its Biological Effects. P. C. McCormack, C. E. Swenberg and H. Bücker (eds.), Plenum Press New York, p. 5.Google Scholar
  37. Tanooka, H., Munakata, N., and Kataha, S.: 1978,Mutation Res. 49, 179.Google Scholar
  38. Taylor, G. R., Spizizen, J., Forster, B. G., Volz, P. A., Bücker, H., Simmonds, R. C., Heimpel, A. M., and Benton, E. V.: 1974,BioScience 24, 505.Google Scholar
  39. Webb, S. J.: 1965,Bound Water in Biologicl Integrity, C. C. Thomas, Springfield Ill.Google Scholar
  40. Weber, P. and Greenberg, J. M.: 1985,Nature 316, 403.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Gerda Horneck
    • 1
  1. 1.DLR, Institute of Aerospace Medicine, Biophysics DivisionKölnGermany

Personalised recommendations