Advertisement

Mathematical Programming

, Volume 19, Issue 1, pp 220–229 | Cite as

Feasible direction methods for stochastic programming problems

  • Andrzej Ruszczyński
Article

Abstract

A unified approach to stochastic feasible direction methods is developed. An abstract point-to-set map description of the algorithm is used and a general convergence theorem is proved. The theory is used to develop stochastic analogs of classical feasible direction algorithms.

Key words

Stochastic Programming Feasible Direction Methods Point-to-Set Maps Convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.G. Bazhenov and A.M. Gupal, “On a certain stochastic analog of the feasible direction algorithm”,Kibenetika 9 (1973) 94–95 [in Russian].Google Scholar
  2. [2]
    M. Brdyś and A. Ruszczyński, “Note on the application of Zangwill's theory to feasible direction methods”, report I.2.03, Instytut Automatyki, Politechnika Warszawska 1978 [in Polish].Google Scholar
  3. [3]
    Yu. M. Ermoliev,Stochastic programming methods (Nauka, Moskow, 1976) [in Russian].Google Scholar
  4. [4]
    V. Fabian, “Stochastic approximation of constrained minima”,Transactions of the 4th Prague conference on information theory, statistical desicion functions and random processes, 1965 (Prague, 1967) pp. 277–290.Google Scholar
  5. [5]
    A.M. Gupal,Stochastic methods for solving nonsmooth extremal problems (Naukova Dumka, Kiev, 1979) [in Russian].Google Scholar
  6. [6]
    V. Ya. Katkovnik,Linear estimates and stochastic optimization problems (Nauka, Moscow, 1976) [in Russian].Google Scholar
  7. [7]
    H.J. Kushner, “Stochastic approximation algorithms for constrained optimization problems”,The Annals of Statistics 2 (1974) 713–723.Google Scholar
  8. [8]
    H.J. Kushner and D.S. Clark,Stochastic approximation methods for constrained and unconstrained systems (Springer, Berlin, 1978).Google Scholar
  9. [9]
    H.J. Kushner and T. Gavin, “Stochastic approximation type methods for constrained systems: algorithms and numerical results”,IEEE Transactions on Automatic Control AC-19 (1974) 349–357.Google Scholar
  10. [10]
    E.A. Nurminski, “Convergence conditions for nonlinear programming methods”,Kibernetika 8 (1972) 79–81 [in Russian].Google Scholar
  11. [11]
    E.A. Nurminski,Numerical methods for solving deterministic and stochastic minimax problems (Naukova Dumka, Kiev, 1979) [in Russian].Google Scholar
  12. [12]
    E. Polak,Computational methods in optimization (Academic Press, New York, 1971).Google Scholar
  13. [13]
    B.T. Poljak, “Nonlinear programming methods in the presence of noise”,Mathematical Programming 14 (1978) 87–97.Google Scholar
  14. [14]
    J.K. Sengupta,Stochastic programming (North-Holland, Amsterdam, 1972).Google Scholar
  15. [15]
    M.T. Wasan,Stochastic approximation (Cambridge University Press, Cambridge, 1969).Google Scholar
  16. [16]
    D.B. Yudin,Problems and methods of stochastic programming (Sovetskoe Radio, Moscow 1979) [in Russian].Google Scholar
  17. [17]
    W.T. Zangwill,Nonlinear programming: A unified approach (Prentice Hall, Englewood Cliffs, 1969).Google Scholar

Copyright information

© The Mathematical Programming Society 1980

Authors and Affiliations

  • Andrzej Ruszczyński
    • 1
  1. 1.Instytut AutomatykiPolitechnika WarszawskaWarszawaPoland

Personalised recommendations