Thermodynamics of strecker synthesis in hydrothermal systems

Abstract

Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

This is a preview of subscription content, log in to check access.

References

  1. Cairns-Smith, A. G., Hall, A. J., and Russell, M. J.: 1992,Orig. Life Evol. Biosphere 22, 161.

    CAS  Article  Google Scholar 

  2. Chyba, C. and Sagan, C.: 1992,Nature 335, 125.

    Article  Google Scholar 

  3. Cronin, J. R.: 1989,Adv. Space Res. 9, 59.

    CAS  PubMed  Article  Google Scholar 

  4. Cronin, J. R. and Chang, S.: 1993, in The Chemistry of hive's Origins, J. M. Greenberg and V. Pirronello (eds.), Kluwer Academic Publishers, p. 209.

  5. DesMarais, D. J.: 1985, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, E. T. Sundquist and W. S. Broecker (eds.), American Geophysical Union, Washington, D. C, p. 602.

    Google Scholar 

  6. Fegley, Jr., B.: 1993, in The Chemistry of Life's Origins, J. M. Greenberg and V. Pirronello (eds.), Kluwer Academic Publishers, p. 75.

  7. French, B.: 1964, Ph. D. Thesis, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  8. Helgeson, H. C: 1991,Geol. Soc. Amer. Abstr. Prog. 23, A25.

  9. Helgeson, H. C, Knox, A. M., Owens, C. E., and Shock, E. L.: 1993,Geochim. Cosmochim. Acta 57, 3295.

    CAS  Article  Google Scholar 

  10. Hennet, R. J.-C, Holm, N. G., and Engel, M. H.: 1992,Naturwissenschaften 79, 361.

    CAS  PubMed  Article  Google Scholar 

  11. Holm, N. G. and Hennet, R. J.-C: 1992,Orig. Life Evol. Biosphere 22, 15.

    CAS  Article  Google Scholar 

  12. Kasting, J. F.: 1990,Orig. Life Evol. Biosphere 20, 199.

    CAS  Article  Google Scholar 

  13. Kasting, J. F.: 1993,Science 259, 920.

    CAS  PubMed  Article  Google Scholar 

  14. Kasting, J. F., Zahnle, K. J., and Walker, J. C. G.: 1983,Precamb. Res. 20, 121.

    CAS  Article  Google Scholar 

  15. Kasting, J. F., Eggler, D. H., and Raeburn, S. P.: 1993,J. Geology 101, 245.

    CAS  Article  Google Scholar 

  16. Kuhn, W. R. and Atreya, S. K.: 1979,Icarus 37, 207.

    CAS  Article  Google Scholar 

  17. Maher, K. A. and Stevenson, D. J.: 1988,Nature 331, 612.

    CAS  PubMed  Article  Google Scholar 

  18. Miller, S. L.: 1957,Biochim. Biophys. Acta 23, 480.

    CAS  PubMed  Article  Google Scholar 

  19. Miller, S. L.: 1993, in Organic Geochemistry, M. H. Engel and S. A. Macko (eds.), Plenum Press, New York, p. 625.

    Google Scholar 

  20. Miller, S. L. and Van Trump, J. E.: 1981, in Origins of Life, Y. Wolman (ed.), D. Reidel Publ. Co., Dordrecht, Holland, p. 135.

    Google Scholar 

  21. Peltzer, E. T., Bada, J. L., Schlesinger, G., and Miller, S. L.: 1984,Adv. Space Res. 4, 69.

    CAS  PubMed  Article  Google Scholar 

  22. Russell, M. J., Hall, A. J., and Turner, D.: 1989,Terra Nova 1, 238.

    Article  Google Scholar 

  23. Russell, M. J., Daniel, R. M., Hall, A. J., and Sherringham, J. A.: 1994a,J. Mol. Evol. 39, 231.

    CAS  Article  Google Scholar 

  24. Russell, M. J., Hall, A. J., and Sherringham, J. A.: 1994b, Biomineralization Conference, Nottingham Trent University, March 1994.

  25. Schulte, M. D. and Shock, E. L.: 1993,Geochim. Cosmochim. Acta 57, 3835.

    CAS  PubMed  Article  Google Scholar 

  26. Shock, E. L.: 1988,Geology 16, 886.

    CAS  Article  Google Scholar 

  27. Shock, E. L.: 1989,Geology 17, 572.

    CAS  Article  Google Scholar 

  28. Shock, E. L.: 1990,Orig. Life Evol. Biosphere 20, 331.

    CAS  Article  Google Scholar 

  29. Shock, E. L.: 1992,Orig. Life Evol. Biosphere 22, 67.

    CAS  Article  Google Scholar 

  30. Shock, E. L.: 1994a, in The Role of Organic Acids in Geological Processes, M. Lewan and E. Pittman (eds.), Springer-Verlag, p. 270.

  31. Shock, E. L.: 1994b, Amer. J. Sci. (in press).

  32. Shock, E. L. and Helgeson, H. C: 1988,Geochim. Cosmochim. Acta 52, 2009.

    CAS  Article  Google Scholar 

  33. Shock, E. L. and Helgeson, H. C: 1990,Geochim. Cosmochim. Acta 54, 915.

    CAS  Article  Google Scholar 

  34. Shock, E. L. and McKinnon, W. B.: 1993,Icarus 106, 464–477.

    CAS  PubMed  Article  Google Scholar 

  35. Shock, E. L., Helgeson, H. C, and Sverjensky, D. A.: 1989,Geochim. Cosmochim. Acta 53, 2157.

    CAS  Article  Google Scholar 

  36. Shock, E. L., McCollom, T. M., and Schulte, M. D.: 1994, Orig. Life Evol. Biosphere (this issue).

  37. Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A., and Helgeson, H. C: 1992,J. Chem. Soc. Faraday Trans. 88, 803.

    CAS  Article  Google Scholar 

  38. Sleep, N. H., Zahnle, K. J., Kasting, J. F., and Morowitz, H. J.: 1989,Nature 342, 139.

    CAS  PubMed  Article  Google Scholar 

  39. Stevenson, D. J.: 1983, in Earth's Earliest Biosphere: Its Origin and Evolution, J. W. Schopf (ed.), Princeton University Press, Princeton, p. 32.

    Google Scholar 

  40. Summers, D. P. and Chang, S.: 1993,Nature 365, 630.

    CAS  PubMed  Article  Google Scholar 

  41. Von Damm, K. L.: 1990,Ann. Rev. Earth Space Sci. 18, 173.

    Article  Google Scholar 

  42. Wächtershäuser, G.: 1988a,Microbiol. Rev. 52, 452.

    PubMed Central  PubMed  Google Scholar 

  43. Wächtershäuser, G.: 1988b,System. Appl. Microbiol. 10, 207.

    Article  Google Scholar 

  44. Woese, C. R.: 1987,Microbiol. Rev. 51, 221.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulte, M., Shock, E. Thermodynamics of strecker synthesis in hydrothermal systems. Origins Life Evol Biosphere 25, 161–173 (1995). https://doi.org/10.1007/BF01581580

Download citation

Keywords

  • Hydrothermal System
  • Glycolic Acid
  • Hydroxy Acid
  • Standard Gibbs Free Energy
  • Equilibrium Activity