Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

  • Everett L. Shock
  • Thomas McCollom
  • Mitchell D. Schulte


Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.


Pyrite Chemical Energy Hydrothermal Fluid Hydrothermal System Invariant Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberty, R. A.: 1992,Biophysical Chemistry 42, 117.PubMedCrossRefGoogle Scholar
  2. Baas-Becking, L. G. M., Kaplan, I. R., and Moore, O.: 1960,J. Geol. 68, 243.CrossRefGoogle Scholar
  3. Bowers, T. S. and Taylor, H. P., Jr.: 1985,J. Geophys. Res. 90, 12583.CrossRefGoogle Scholar
  4. Bowers, T. S., Von Damm, K. L., and Edmond, J. M.: 1985,Geochim. Cosmochim. Acta 49, 2239.CrossRefGoogle Scholar
  5. Bowers, T. S., Campbell, A. C., Measures, C. I., Spivak, A. J., Khadem, M., and Edmond, J. M.: 1988,J. Geophys. Res. 93, 4522.CrossRefGoogle Scholar
  6. Cairns-Smith, A. G., Hall, A. J., and Russell, M. J.: 1992,Orig. Life Evol. Biosphere 22, 161.CrossRefGoogle Scholar
  7. Childress, J. J. and Fisher, C. R.: 1992,Oceanogr. Mar. Biol. Ann. Rev. 30, 337.Google Scholar
  8. Chou, I.-M.: 1987, in Hydrothermal Experimental Techniques, G. C. Ulmer and H. L. Barnes (eds.), Wiley, NY, p. 61.Google Scholar
  9. Daniel, R. M.: 1992,Orig. Life Evol. Biosphere 22, 33.CrossRefGoogle Scholar
  10. Drobner, E., Huber, H., Wächtershäuser, G., Rose, D., and Stetter, K. O.: 1990,Nature 346, 742.CrossRefGoogle Scholar
  11. Fegley, Jr., B., Prinn, R. G., Hartman, H., and Watkins, G. H.: 1986,Nature 319, 305.PubMedCrossRefGoogle Scholar
  12. French, B. M.: 1964, Ph.D Thesis, The Johns Hopkins University, Baltimore, MD.Google Scholar
  13. Gilbert, W.: 1986,Nature 319, 618.CrossRefGoogle Scholar
  14. Haymon, R. M. and Kastner, M.: 1981,Earth Planet. Sci. Lett. 53, 63.CrossRefGoogle Scholar
  15. Haymon, R. M., Fornari, D. J., Edwards, M. H., Carbotte, S., Wright, D., and Macdonald, K. C.: 1991,Earth Planet Sci. Lett. 104, 513.CrossRefGoogle Scholar
  16. Helgeson, H. C.: 1969,Amer. Jour. Sci. 267, 729.CrossRefGoogle Scholar
  17. Helgeson, H. C: 1979, in Geochemistry of Hydrothermal Ore Deposits, 2nd ed., H. L. Barnes (ed.), Wiley, NY, p. 568.Google Scholar
  18. Helgeson, H. C: 1985,Pure and Applied Chemistry 57, 31.CrossRefGoogle Scholar
  19. Hennet, R. J.-C., Holm, N. G. and Engel, M. H.: 1992,Naturwissenschaften 79, 361.PubMedCrossRefGoogle Scholar
  20. Holm, N.: 1992,Orig. Life Evol. Biosphere 22, 5.CrossRefGoogle Scholar
  21. Janecky, D. R. and Seyfried, W. E., Jr.: 1984,Geochim. Cosmochim. Acta 48, 2723.CrossRefGoogle Scholar
  22. Johnson, J. W. and Norton, D.: 1991,Amer. Jour. Sci. 291, 541.CrossRefGoogle Scholar
  23. Johnson, J. W., Oelkers, E. H., and Helgeson, H. C: 1992,Computers and Geosciences 18, 899.CrossRefGoogle Scholar
  24. Joyce, G. F.: 1989,Nature 338, 217.PubMedCrossRefGoogle Scholar
  25. Kasting, J. F.: 1990,Orig. Life Evol. Biosphere 20, 199.CrossRefGoogle Scholar
  26. Kasting, J. F.: 1993,Science 259, 920.PubMedCrossRefGoogle Scholar
  27. Kasting, J. F., Zahnle, K. J., and Walker, J. C. G.: 1983,Precamb. Res. 20, 121.CrossRefGoogle Scholar
  28. Levine, J. S.: 1982,J. Mol. Evol. 18, 161.PubMedCrossRefGoogle Scholar
  29. Levine, J. S.: 1985, in The Photochemistry of Atmospheres, Earth, the Other Planets and Comets, J. S. Levine (ed.), Academic Press, Orlando, p. 3.Google Scholar
  30. Levine, J. S., Augustsson, T. R., and Natarajan, M.: 1982,Orig. Life Evol. Biosphere 12, 245.CrossRefGoogle Scholar
  31. Lewin, R.: 1986,Science 231, 545.PubMedCrossRefGoogle Scholar
  32. MacLeod, G., McKewon, C, Hall, A. J., and Russell, M. J.: 1994,Orig. Life Evol. Biosphere 24, 19.CrossRefGoogle Scholar
  33. Maher, K. A. and Stevenson, D. J.: 1988,Nature 331, 612.PubMedCrossRefGoogle Scholar
  34. Mottl, M. J. and Wheat, C. G.: 1994,Geochim. Cosmochim. Acta 58, 2225.CrossRefGoogle Scholar
  35. Ohmoto, H., Kakegawa, T., and Lowe, D. R.: 1993,Science 262, 555.PubMedCrossRefGoogle Scholar
  36. Orgel, L. E.: 1986,J. Theor. Biol. 123, 127.PubMedCrossRefGoogle Scholar
  37. Pereira, W. E., Rostadt, C. E., Leiker, T. J., Updegraff, D. M., and Bennett, J. L.: 1988,Appl. Environ. Microbiol. 54, 827.PubMedCentralPubMedGoogle Scholar
  38. Russell, M. J., Daniel, R. M., and Hall, A. J.: 1993,Terra Nova 5, 343.CrossRefGoogle Scholar
  39. Russell, M. J., Daniel, R. M., Hall, A. J., and Sherringham, J. A.: 1994,J. Mol. Evol. 39, 231.CrossRefGoogle Scholar
  40. Sassani, D. C. and Shock, E. L.: 1992,Geochim. Cosmochim. Acta 56, 3895.CrossRefGoogle Scholar
  41. Schulte, M. D. and Shock, E. L.: 1993,Geochim. Cosmochim. Acta 57, 3835.PubMedCrossRefGoogle Scholar
  42. Seewald, J.: 1994,Nature 370, 285.CrossRefGoogle Scholar
  43. Segerer, A. H. et al.: 1993,Orig. Life Evol. Biosphere 23, 77.CrossRefGoogle Scholar
  44. Seyfried, Jr., W. E., Janecky, D. R., and Berndt, M. E.: 1987, in Hydrothermal Experimental Techniques, G. C. Ulmer and H. L. Barnes (eds.), John Wiley and Sons, New York, p. 216.Google Scholar
  45. Sharp, P. A.: 1985,Cell 42, 397.PubMedCrossRefGoogle Scholar
  46. Shock, E. L.: 1990a,Orig. Life Evol. Biosphere 20, 331.CrossRefGoogle Scholar
  47. Shock, E. L.: 1990b,Geochim. Cosmochim. Acta 54, 1185–1189.CrossRefGoogle Scholar
  48. Shock, E. L.: 1992a,Orig. Life Evol. Biosphere 22, 67.CrossRefGoogle Scholar
  49. Shock, E. L.: 1992b,Orig. Life Evol. Biosphere 22, 135.CrossRefGoogle Scholar
  50. Shock, E. L.: 1992c,Geochim. Cosmochim. Acta 56, 3481.CrossRefGoogle Scholar
  51. Shock, E. L.: 1993,Geochim. Cosmochim. Acta 57, 3341.CrossRefGoogle Scholar
  52. Shock, E. L.: 1994a, Amer. Jour. Sci. (in press).Google Scholar
  53. Shock, E. L.: 1994b,Geochim. Cosmochim. Acta 58, 2756.CrossRefGoogle Scholar
  54. Shock, E. L. and Helgeson, H. C: 1988,Geochim. Cosmochim. Acta 52, 2009.CrossRefGoogle Scholar
  55. Shock, E. L. and Helgeson, H. C: 1990,Geochim. Cosmochim. Acta 54, 915.CrossRefGoogle Scholar
  56. Shock, E. L. and Koretsky, C. M.: 1993,Geochim. Cosmochim. Acta 57, 4899.CrossRefGoogle Scholar
  57. Shock, E. L. and McKinnon, W. B.: 1993,Icarus 106, 464.PubMedCrossRefGoogle Scholar
  58. Shock, E. L., Sverjensky, D. A., and Helgeson, H. C: 1989,Geochim. Cosmochim. Acta 53, 2157.CrossRefGoogle Scholar
  59. Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A., and Helgeson, H. C: 1992,J. Chem. Soc. Faraday Trans 88, 803.CrossRefGoogle Scholar
  60. Sleep, N. H., Zahnle, K. J.., Kasting, J. F., and Morowitz, H. J.: 1989,Nature 342, 139.PubMedCrossRefGoogle Scholar
  61. Stevenson, D. J.: 1983, in Earth's Ealiest Biosphere: Its Origin and Evolution, J. W. Schopf (ed.), Princeton University Press, Princeton, p. 32.Google Scholar
  62. Sverjensky, D. A., Hemley, J. J., and D'Angelo, W. M.: 1991,Geochim. Cosmochim. Acta 55, 989.CrossRefGoogle Scholar
  63. Thauer, R. K., Jungermann, K., and Decker, K.: 1977,Bacteriol. Rev. 41, 100.PubMedCentralPubMedGoogle Scholar
  64. Tunnicliffe, V.: 1991,Oceanogr. Mar. Biol. Ann. Rev. 29, 319.Google Scholar
  65. Vogel, T. M. and Grbic-Galic, D.: 1986,Appl. Environ. Microbiol. 52, 200.PubMedCentralPubMedGoogle Scholar
  66. Von Damm, K. L.: 1990,Ann. Rev. Earth Planet. Sci. 18, 173.CrossRefGoogle Scholar
  67. Wächtershäuser, G.: 1988,Microbiol. Rev. 52, 452.PubMedCentralPubMedGoogle Scholar
  68. Wächtershäuser, G.: 1990a,Orig. Life Evol. Biosphere 20, 173.CrossRefGoogle Scholar
  69. Wächtershäuser, G.: 1990b,Proc. Nat. Acad. Sci. USA 87, 200.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Wächtershäuser, G.: 1992,Prog. Biophys. Molec. Biol. 58, 85.CrossRefGoogle Scholar
  71. Walker, J. C. G.: 1983,Nature 302, 518.CrossRefGoogle Scholar
  72. Woese, C. R.: 1987,Microbiol. Rev. 51, 221.PubMedCentralPubMedGoogle Scholar
  73. Woese, C. R., Kandler, O., and Wheelis, M. L.: 1990,Proc. Nat. Acad. Sci. 87, 4576.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Zhang, J.-Z. and Millero, F. J.: 1993,Geochim. Cosmochim. Acta 57, 1705.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Everett L. Shock
    • 1
    • 2
  • Thomas McCollom
    • 1
  • Mitchell D. Schulte
    • 1
  1. 1.Department of Earth and Planetary SciencesWashington UniversitySt. LouisUSA
  2. 2.McDonnell Center for the Space SciencesWashington UniversitySt. LouisUSA

Personalised recommendations