Mathematical Programming

, Volume 58, Issue 1–3, pp 137–145 | Cite as

A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints

  • Alexander Ioffe


It is shown that a Lagrange multiplier rule involving the Michel-Penot subdifferentials is valid for the problem: minimizef0(x) subject tof i (x) ⩽ 0,i = 1, ⋯,m;f i (x) = 0,i = m + 1,⋯,n;xQ where all functionsf are Lipschitz continuous andQ is a closed convex set. The proof is based on the theory of fans.

Key words

Lipschitz function subdifferential fan weak prederivative of a Lipschitz map controllability Lagrange multiplier rule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983).Google Scholar
  2. [2]
    S. Dolecki, “Hypertangent cones for special classes of sets,” in: J.-B. Hiriart-Urruty et al., eds.,Optimization. Theory and Algorithms (Dekker, New York, 1983) pp. 3–11.Google Scholar
  3. [3]
    H. Frankowska, “The adjoint differential inclusions associated to a minimal trajectory of a differential inclusion,”Analyse Nonlinéare, Ann. Inst. H. Poincaré 2 (1985) 75–99.Google Scholar
  4. [4]
    E. Giner, “Ensembles et fonctions étoiles: applications à l'optimisation et au calcul différentiel généralisé,” manuscript (Toulouse, 1981).Google Scholar
  5. [5]
    H. Halkin, “Implicit functions and optimization problems without continuous differentiability of the data,”SIAM Journal on Control and Optimization 12 (1974) 229–236.Google Scholar
  6. [6]
    A.D. Ioffe, “Nonsmooth analysis: differential calculus of non-differentiable mappings,”Transactions of the American Mathematical Society 266 (1981) 1–56.Google Scholar
  7. [7]
    A.D. Ioffe, “Necessary conditions in nonsmooth optimization,”Mathematics of Operation Research 9 (1984) 159–189.Google Scholar
  8. [8]
    A.D. Ioffe, “Approximate subdifferentials and applications 1. The finite dimensional theory,”Transactions of the American Mathematical Society 281 (1984) 289–316.Google Scholar
  9. [9]
    P. Michel et J.-P. Penot, “Calcul sous-diffêrentil pour les fonctions lipschitziennes et non-lipschitziennes,”C.R. de l'Académie des Sciences Paris, Série I 298 (1984) 269–272.Google Scholar
  10. [10]
    B.Sh. Mordukhovich,Approximation Methods in Problems of Optimization and Control (Moscow, “Nauka”, 1988). [In Russian.]Google Scholar
  11. [11]
    R.T. Rockafellar,The Theory of Subgradients and its Application to Optimization (Holderman, Berlin, 1981).Google Scholar
  12. [12]
    J.S. Treiman, “Shrinking generalized gradients,”Nonlinear Analysis, Theory, Methods and Applications 12 (1988) 1429–1449.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1993

Authors and Affiliations

  • Alexander Ioffe
    • 1
  1. 1.Department of MathematicsTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations