Mathematical Programming

, Volume 59, Issue 1–3, pp 87–115 | Cite as

The partition problem

  • Sunil Chopra
  • M. R. Rao


In this paper we describe several forms of thek-partition problem and give integer programming formulations of each case. The dimension of the associated polytopes and some basic facets are identified. We also give several valid and facet defining inequalities for each of the polytopes.

Key words

Graph partition multiway cut polytope facet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Barahona, M. Grötschel and A.R. Mahjoub, “Facets of the bipartite subgraph polytope,”Mathematics of Operations Research 10 (1985) 340–358.Google Scholar
  2. [2]
    F. Barahona and A.R. Mahjoub, “On the cut polytope,”Mathematical Programming 36 (1986) 157–173.Google Scholar
  3. [3]
    F. Barahona and A. Casari, “On the Magnetisation of the ground states in two dimensional Ising spin glasses,” Research Report, University of Waterloo (1987).Google Scholar
  4. [4]
    J.A. Bondy and U.S.R. Murty,Graph Theory with Applications (North-Holland, Amsterdam, 1976).Google Scholar
  5. [5]
    R.C. Carlson and G.L. Nemhauser, “Scheduling to minimize interaction costs,”Operations Research 14 (1966) 52–58.Google Scholar
  6. [6]
    S. Chopra and M.R. Rao, “The Partition Problem I: Formulations, dimensions and basic facets,” Working Paper No. 89-27, Stern School of Business, New York University (New York, 1989).Google Scholar
  7. [7]
    M. Conforti, M.R. Rao and A. Sassano, “The Equipartition Polytope I,”Mathematical Programming 49 (1990/91) 49–70.Google Scholar
  8. [8]
    M. Conforti, M.R. Rao and A. Sassano, “The Equipartition Polytope II,”Mathematical Programming 49 (1990/91) 71–90.Google Scholar
  9. [9]
    M. Deza, M. Grötschel and M. Laurent, “Clique web facets for multicut polytopes,” Report No. 186, Institut für Mathematik, Universität Augsburg (1989).Google Scholar
  10. [10]
    M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).Google Scholar
  11. [11]
    O. Goldschmidt and D.S. Hochbaum, “Polynomial algorithm for thek-cut problem,” preprint, University of California (Berkeley, CA, 1987).Google Scholar
  12. [12]
    M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning polytope,”Mathematical Programming 47 (1990) 367–387.Google Scholar
  13. [13]
    M. Grötschel and Y. Wakabayashi “A cutting plane algorithm for a clustering problem,”Mathematical Programming 45 (1989) 59–96.Google Scholar
  14. [14]
    M. Grötschel and Y. Wakayabashi “Composition of facets of the clique partitioning polytope,” Report No. 18, Institut für Mathematik, Universität Augsburg (1987).Google Scholar
  15. [15]
    D.S. Johnson, C.H. Papadimitriou, P. Seymour and M. Yannakakis, “The complexity of multi way cuts,” extended abstract (1983).Google Scholar
  16. [16]
    B.W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”Bell Systems Technical Journal 49 (1970) 291–308.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1993

Authors and Affiliations

  • Sunil Chopra
    • 1
  • M. R. Rao
    • 2
  1. 1.Department of Managerial Economics and Decision SciencesJ.L. Kellogg Graduate School of Management, Northwestern UniversityEvanstonUSA
  2. 2.Leonard N. Stern School of BusinessNew York UniversityNew YorkUSA

Personalised recommendations