Mathematical Programming

, Volume 56, Issue 1–3, pp 121–160 | Cite as

Facets for the cut cone I

  • Michel Deza
  • Monique Laurent


We study facets of the cut coneC n , i.e., the cone of dimension 1/2n(n − 1) generated by the cuts of the complete graph onn vertices. Actually, the study of the facets of the cut cone is equivalent in some sense to the study of the facets of the cut polytope. We present several operations on facets and, in particular, a “lifting” procedure for constructing facets ofCn+1 from given facets of the lower dimensional coneC n . After reviewing hypermetric valid inequalities, we describe the new class of cycle inequalities and prove the facet property for several subclasses. The new class of parachute facets is developed and other known facets and valid inequalities are presented.

Key words

Max-cut problem cone polytope facet lifting hypermetric inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Assouad, “Sur les inégalités valides dansL 1,”European Journal of Combinatorics 5 (1984) 99–112.Google Scholar
  2. [2]
    P. Assouad and C. Delorme, “Graphes plongeables dansL 1,”Comptes Rendus de l'Académie des Sciences de Paris 291 (1980) 369–372.Google Scholar
  3. [3]
    P. Assouad and M. Deza, “Metric subspaces ofL 1,”Publications Mathématiques d'Orsay, Vol. 3 (1982).Google Scholar
  4. [4]
    D. Avis and Mutt, “All facets of the six point Hamming cone,”European Journal of Combinatorics 10 (1989) 309–312.Google Scholar
  5. [5]
    D. Avis and M. Deza, “The cut cone,L 1-embeddability, complexity and multicommodity flows,”Networks 21 (1991) 595–617.Google Scholar
  6. [6]
    F. Barahona, “The max-cut problem on graphs not contractible toK 5,”Operations Research Letters 2 (1983) 107–111.Google Scholar
  7. [7]
    F. Barahona and M. Grötschel, “On the cycle polytope of a binary matroid,”Journal of Combinatorial Theory B 40 (1986) 40–62.Google Scholar
  8. [8]
    F. Barahona, M. Grötschel, M. Jünger and G. Reinelt, “An application of combinatorial optimization to statistical physics and circuit layout design,”Operations Research 36(3) (1988) 493–513.Google Scholar
  9. [9]
    F. Barahona, M. Grötschel and A.R. Mahjoub, “Facets of the bipartite subgraph polytope,”Mathematics of Operations Research 10 (1985) 340–358.Google Scholar
  10. [10]
    F. Barahona, M. Jünger and G. Reinelt, “Experiments in quadratic 0–1 programming,”Mathematical Programming 44 (1989) 127–137.Google Scholar
  11. [11]
    F. Barahona and A. R. Mahjoub, “On the cut polytope,”Mathematical Programming 36 (1986) 157–173.Google Scholar
  12. [12]
    A.E. Brower, A.M. Cohen and A. Neumaier,Distance Regular Graphs (Springer, Berlin, 1989).Google Scholar
  13. [13]
    F.C. Bussemaker, R.A. Mathon and J.J. Seidel, “Tables of two-graphs,” TH-Report 79-WSK-05, Technical University Eindhoven (Eindhoven, Netherlands, 1979).Google Scholar
  14. [14]
    M. Conforti, M.R. Rao and A. Sassano, “The equipartition polytope: parts I & II,”Mathematical Programming 49 (1990) 49–70, 71–91.Google Scholar
  15. [15]
    C. De Simone, “The Hamming cone, the cut polytope and the boolean quadric polytope,” preprint (1988).Google Scholar
  16. [16]
    C. De Simone, “The cut polytope and the boolean quadric polytope,”Discrete Mathematics 79 (1989/90) 71–75.Google Scholar
  17. [17]
    C. De Simone, M. Deza and M. Laurent, “Collapsing and lifting for the cut cone,” Report No. 265, IASI-CNR (Roma, 1989).Google Scholar
  18. [18]
    M. Deza, “On the Hamming geometry of unitary cubes,”Doklady Akademii Nauk SSR 134 (1960) 1037–1040. [English translation in:Soviet Physics Doklady 5 (1961) 940–943.]Google Scholar
  19. [19]
    M. Deza, “Linear metric properties of binary codes,”Proceedings of the 4th Conference of USSR on Coding Theory and Transmission of Information, Moscow-Tachkent (1969) 77–85. [In Russian.]Google Scholar
  20. [20]
    M. Deza, “Matrices de formes quadratiques non négatives pour des arguments binaires,”Comptes Rendus de l'Académie des Sciences de Paris 277 (1973) 873–875.Google Scholar
  21. [21]
    M. Deza, “Small pentagonal spaces,”Rendiconti del Seminario Matematico di Brescia 7 (1982) 269–282.Google Scholar
  22. [22]
    M. Deza, K. Fukuda and M. Laurent, “The inequicut cone,” Research Report No. 89-04, GSSM, University of Tsukuba (Tokyo, 1989).Google Scholar
  23. [23]
    M. Deza, V.P. Grishukhin and M. Laurent, “The hypermetric cone is polyhedral,” to appear in:Combinatorica. Google Scholar
  24. [24]
    M. Deza and M. Laurent, “Facets for the cut cone II: Clique-web inequalities,”Mathematical Programming 56 (1992) 161–188, this issue.Google Scholar
  25. [25]
    J. Fonlupt, A.R. Mahjoub and J-P. Uhry, “Composition of graphs and the bipartite subgraph polytope,” to appear in:Discrete Mathematics. Google Scholar
  26. [26]
    M.R. Garey and D.S. Johnson,Computers and intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, CA, 1979).Google Scholar
  27. [27]
    V.P. Grishukhin, “All facets of the cut coneC n forn=7 are known,”European Journal of Combinatorics 11 (1990) 115–117.Google Scholar
  28. [28]
    M. Grötschel and W.R. Pulleyblank, “Weakly bipartite graphs and the max-cut problem,”Operations Research Letters 1 (1981) 23–27.Google Scholar
  29. [29]
    M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning polytope,”Mathematical Programming 47 (1990) 367–387.Google Scholar
  30. [30]
    F.O. Hadlock, “Finding a maximum cut of planar graph in polynomial time,”SIAM Journal on Computing 4 (1975) 221–225.Google Scholar
  31. [31]
    P.L. Hammer, “Some network flow problems solved with pseudo-boolean programming,”Operations Research 13 (1965) 388–399.Google Scholar
  32. [32]
    A.V. Karzanov, “Metrics and undirected cuts,”Mathematical Programming 32 (1985) 183–198.Google Scholar
  33. [33]
    J.B. Kelly, “Hypermetric spaces,”Lecture notes in Mathematics No. 490 (Springer, Berlin, 1975) pp. 17–31.Google Scholar
  34. [34]
    J.B. Kelly, unpublished.Google Scholar
  35. [35]
    M. Padberg, “The Boolean quadric polytope: Some characteristics, facets and relatives,”Mathematical Programming 45 (1989) 139–172.Google Scholar
  36. [36]
    S. Poljak and D. Turzik, “On a facet of the balanced subgraph polytope,”Casopis Pro Pestovani Matematiky 112 (1987) 373–380.Google Scholar
  37. [37]
    S. Poljak and D. Turzik, “Max-cut in circulant graphs,” to appear in:Annals of Discrete Mathematics. Google Scholar
  38. [38]
    P. Terwilliger and M. Deza, “Classification of finite connected hypermetric spaces,”Graphs and Combinatorics 3(3) (1987) 293–298.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1992

Authors and Affiliations

  • Michel Deza
    • 1
  • Monique Laurent
    • 2
  1. 1.CNRS, Université Paris VIIParis 05France
  2. 2.CNRS, LAMSADE, Université Paris DauphineParis 16France

Personalised recommendations