Mathematical Programming

, Volume 8, Issue 1, pp 308–331

Optimization algorithms and point-to-set-maps

  • P. Huard
Article

Abstract

Two general nonlinear optimization algorithms generating a sequence of feasible solutions are described. The justifications for their convergence are based on the concept of point-to-set mapping continuity. These two algorithms cover many conventional feasible solution methods. The convergence results unify these apparently diverse approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berge,Espaces topologiques—Fonctions multivoques (Dunod, Paris, 1966).Google Scholar
  2. [2]
    A. Cauchy, Méthode générale pour la résolution des systèmes d'équations simultanées,Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 25-2 (1847) 536–538.Google Scholar
  3. [3]
    G. Debreu,Theory of value, Cowles Foundations—Monograph 17 (Wiley, New York, 1959).Google Scholar
  4. [4]
    M. Frank and Ph. Wolfe, An algorithm for quadratic programming,Journal of Naval Research Logistic Quaterly 3 (1956) 95–120.Google Scholar
  5. [5]
    W.W. Hogan, Point-to-set maps in mathematical programming, Working Paper No. 170, Western Management Sciences Institute, University of California, Los Angeles, Calif. (1971).Google Scholar
  6. [6]
    P. Huard, Resolution of mathematical programming with nonlinear constraints by the centres, in: J. Abadie, ed.,Nonlinear programming (North-Holland, Amsterdam, 1967) pp. 209–219.Google Scholar
  7. [7]
    P. Huard, Programmation mathématique convexe,Revue Francaise d'Information et de Recherche Opérationnelle 7 (1968) 43–59.Google Scholar
  8. [8]
    P. Huard, A method of centers by upper-bounding functions with applications, in: Mangasarian, Ritter and Rosen, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 1–30.Google Scholar
  9. [9]
    R. Meyer, The validity of a family of optimization methods,SIAM Journal on Control 8 (1970) 41–54.Google Scholar
  10. [10]
    E. Polak, On the implementation of conceptual algorithms, in: Mangasarian, Ritter and Rosen, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 275–291.Google Scholar
  11. [11]
    J.B. Rosen, The gradient projection method for nonlinear programming, Part I: Linear constraints,SIAM Journal 8 (1960) 181–217.Google Scholar
  12. [12]
    J.B. Rosen, Iterative solution of nonlinear optimal control problem,SIAM Journal on Control 4 (1966) 223–244.Google Scholar
  13. [13]
    W.I. Zangwill,Nonlinear programming: a unified approach (Prentice Hall, Englewood Cliffs, 1969).Google Scholar
  14. [14]
    G. Zoutendijk,Methods of feasible directions (Elsevier, Amsterdam, 1960).Google Scholar

Copyright information

© The Mathematical Programming Society 1975

Authors and Affiliations

  • P. Huard
    • 1
  1. 1.Electricité de FranceParisFrance

Personalised recommendations