Mathematical Programming

, Volume 82, Issue 3, pp 413–448 | Cite as

An SQP method for general nonlinear programs using only equality constrained subproblems

  • P. Spellucci
Article

Abstract

In this paper we describe a new version of a sequential equality constrained quadratic programming method for general nonlinear programs with mixed equality and inequality constraints. Compared with an older version [P. Spellucci, Han's method without solving QP, in: A. Auslender, W. Oettli, J. Stoer (Eds), Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, vol. 30, Springer, Berlin, 1981, pp. 123–141.] it is much simpler to implement and allows any kind of changes of the working set in every step. Our method relies on a strong regularity condition. As far as it is applicable the new approach is superior to conventional SQP-methods, as demonstrated by extensive numcrical tests. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

Keywords

Sequential quadratic programming SQP method Nonlinear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bracken, G.P. McCormick, Selected applications of nonlinear programming, Wiley, New York, 1968.Google Scholar
  2. [2]
    J.W. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control Optim. 29 (1991) 968–998.Google Scholar
  3. [3]
    R.H. Byrd, J. Nocedal, An analysis of reduced Hessian methods for constrained optimization, Math. Programming 49 (1991) 285–323.Google Scholar
  4. [4]
    R.H. Byrd, J. Nocedal, R.B. Schnabel, Representations of quasi-Newton-matrices and their use in limited memory methods, Math. Programming 63 (1994) 129–156.Google Scholar
  5. [5]
    Th.F. Coleman, A.R. Conn, Nonlinear programming via an exact penalty function: Global analysis, Math. Programming 24 (1982) 137–161.Google Scholar
  6. [6]
    Th.F. Coleman, A.R. Conn, Nonlinear programming via an exact penalty function: Asymptotic analysis, Math. Programming 24 (1982) 123–136.Google Scholar
  7. [7]
    Th.F. Coleman, A.R. Conn, On the local convergence of a quasi-Newton-method for the nonlinear programming problem, SIAM J. Numer. Anal. 21 (1984) 755–769.Google Scholar
  8. [8]
    Th.F. Coleman, P.A. Fenyes, Partitioned quasi-Newton methods for nonlinear equality constrained optimization, Math. Programming 53 (1992) 17–44.Google Scholar
  9. [9]
    A.R. Conn, T. Pietrzykowski, A penalty function method converging directly to a constrained optimum, SIAM J. Numer. Anal. 14 (1977) 348–374.Google Scholar
  10. [10]
    K. Crusius, Ein global konvergentes Verfahren der projizierten Richtungen mit nicht notwendig zulàssigen Iterationspunkten, Ph.D. Thesis, Mainz University, Mainz, Germany, 1983.Google Scholar
  11. [11]
    R.S. Dembo, A set of geometric programming test problems and their solutions, Math. Programming 10 (1976) 192–213.Google Scholar
  12. [12]
    J.C. Dodu, P. Huard, Utilisation de mises à jour doubles dans les méthodes de quasi-Newton, Comptes Rendus de l' Academie de Sciences Paris Série I, 313 (1991) 329–334.Google Scholar
  13. [13]
    I.S. Duff, A.M. Erisman, J.K. Reid, Direct method for sparse matrices, Oxford Univ. Press, Oxford, 1986.Google Scholar
  14. [14]
    R. Fletcher, Practical methods of optimization, 2nd ed., Wiley, Chicester, 1987.Google Scholar
  15. [15]
    D. Gabay, Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization, Math. Programming Stud. 16 (1982) 18–44.Google Scholar
  16. [16]
    Ph.E. Gill, W. Murray, Numerically stable methods for quadratic programming, Math. Programming 14 (1978) 349–372.Google Scholar
  17. [17]
    Ph.E. Gill, W. Murray, M. Saunders, M.H. Wright, Some theoretical properties of an augmented Lagrangian merit function, in: P.M. Pardalos (Ed.), Advances in Optimization and Parallel Computing, North Holland, Amsterdam, 1992, pp. 101–128.Google Scholar
  18. [18]
    Ph.E. Gill, W. Murray, M. Saunders, M.H. Wright, Sparse matrix methods in optimization, SIAM J. Sci. Comp. 5 (1984) 562–589.Google Scholar
  19. [19]
    Ph.E. Gill, S.J. Hammarling, W. Murray, M. Saunders, M.H. Wright, Users Guide for NOPSOL (ver. 4.0), Department O R, Stanford University, Report SOL 86-2, 1986.Google Scholar
  20. [20]
    Ch. Gurwitz, Local convergence of a two-piece update of a projected Hessian matrix, SIAM J. Optim. 4 (1994) 461–485.Google Scholar
  21. [21]
    Ch. Gurwitz, M. Overton, Sequential quadratic programming methods based on approximating a projected Hessian matrix, SIAM J. Sci. Comp. 10 (1989) 631–653.Google Scholar
  22. [22]
    D.M. Himmelblau, Applied nonlinear programming, McGraw-Hill, New York, 1972.Google Scholar
  23. [23]
    J. Heinz, P. Spellucci, A successful implementation of the Pantoja-Mayne SQP method, Optim. Meth. Software 4 (1994) 1–28.Google Scholar
  24. [24]
    W. Hock, K. Schittkowski, Test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems 187, Springer, Berlin, 1981.Google Scholar
  25. [25]
    D.Q. Mayne, E. Polak, A superlinearly convergent algorithm for constrained optimization problems, Math. Programming Stud. 16 (1982) 45–61.Google Scholar
  26. [26]
    J.F.A. Pantoja, D.Q. Mayne, Exact penalty function algorithm with simple updating of the penalty parameter, J. Optim. Theory Appl. 69 (1991) 441–467.Google Scholar
  27. [27]
    W. Murray, J.P. Prieto, A sequential quadratic programming algorithm using an incomplete solution of the subproblem, SIAM J. Optim. 5 (1995) 590–640.Google Scholar
  28. [28]
    J. Nocedal, M. Overton, Projected Hessian updating algorithms for nonlinearly constrained optimization, SIAM J. Numer. Anal. 22 (1985) 821–850.Google Scholar
  29. [29]
    H.K. Overley, Structured Secant Updates for Nonlinear Constrained Optimization, Ph.D. Thesis, Rice University, Rice, Texas, 1991.Google Scholar
  30. [30]
    K. Schittkowski, The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function I, II, Numer. Math. 38 (1981) 83–128.Google Scholar
  31. [31]
    K. Schittkowski, More test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems 282, Springer, Berlin, 1987.Google Scholar
  32. [32]
    P. Spellucci, Numerische Verfahren der nichtlinearen Optimierung, Birkhäuser, Basel, 1993.Google Scholar
  33. [33]
    P. Spellucci, donlp2: do nonlinear programming, code obtainable via anonymous ftp from netlib as netlib/opt/donlp2.Google Scholar
  34. [34]
    P. Spellucci, Han's method without solving QP, in: A. Auslender, W. Oettli, J. Stoer (Eds.), Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, vol. 30, Springer, Berlin, 1981, pp. 123–141.Google Scholar
  35. [35]
    P. Spellucci, Sequential quadratic programming: Theory, implementation, problems, in: M.J. Beckmann, K.W. Gaede, K. Ritter, H. Schneeweiss (Eds.), Methods of Operations Research, vol. 53, Anton Hain, Meisenheim, 1985, pp. 183–213.Google Scholar
  36. [36]
    P. Spellucci, A new technique for inconsistent QP-problems in the SQP-method, Technical University at Darmstadt, Department of Mathematics, preprint 1561, Darmstadt (1993), to appear in Mathematical Methods of Operations Research, vol. 48 (1998).Google Scholar
  37. [37]
    G.W. Stewart, The effects of rounding error on an algorithm for downdating a Cholesky factorization, J.I.M.A. 23 (1979) 203–213.Google Scholar
  38. [38]
    Y. Xie, Reduced Hessian algorithm for solving large scale equality constrained optimization problems, Ph.D. Thesis, University of Colorado at Boulder, Boulder, Colorado, 1991.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1998

Authors and Affiliations

  • P. Spellucci
    • 1
  1. 1.Department of MathematicsTechnical University at DarmstadtDarmstadtGermany

Personalised recommendations