Designs, Codes and Cryptography

, Volume 4, Issue 2, pp 105–121 | Cite as

Translation planes of order 27

  • U. Dempwolff
Article

Abstract

Translation planes of order 27 are classified. Various invariants play an important role in a computer search.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Dempwolff and A. Reifart, The classification of the translation planes of order 16 I,Geom. Ded. Vol. 15 (1983), pp 137–153.Google Scholar
  2. 2.
    A. Reifart, The classification of the translation planes of order 16; II.,Geom. Ded. Vol. 17 (1984) pp. 1–9.Google Scholar
  3. 3.
    T. Czerwinski, The collineation groups of the translation planes of order 25;Geom. Ded. Vol. 39 (1991), pp. 125–137.Google Scholar
  4. 4.
    T. Czerwinski and D. Oakden, The translation planes of order 25;J. Combin. Th. (A), Vol. 52 (1992), pp. 193–217.Google Scholar
  5. 5.
    K. Akiyama, On the translation planes of order 27 that admit a collineation group of order 27; to appear.Google Scholar
  6. 6.
    K. Akiyama, On the Sherk plane: to appear.Google Scholar
  7. 7.
    O.E. Barriga and R. Pomareda, The uniqueness of Herings plane of order 27;Geom. Ded. Vol. 19 (1985), pp. 237–245.Google Scholar
  8. 8.
    P. Dembowski,Finite Geometries, Springer, Berlin, Heidelberg, New York, (1968).Google Scholar
  9. 9.
    H. Lüneburg,Translation Planes, Springer, Berlin, Heidelberg, New York, (1980).Google Scholar
  10. 10.
    C. Charnes, Quadratic matrices and the translation planes of order 52, pp. 155–161, inProc. of the Marshal Hall Conf. John Wiley and Sons, New York, 1993.Google Scholar
  11. 11.
    U. Dempwolff, A characterization of the generalized twisted field planes,Arch. Math. 50 (1988), pp. 477–480.Google Scholar
  12. 12.
    C. Suetake, A new class of translation planes of order,q 3 Osaka J. Math. Vol. 22 (1985), pp. 773–786.Google Scholar
  13. 13.
    M.L. Narayana Rao and K. Kuppuswamy Rao, A new flag transitive affine plane of order 27,Proc. Amer. Math. Soc. Vol. 59 (1976), pp. 337–345.Google Scholar
  14. 14.
    F.A. Sherk, A translation plane of order 27 with a small translation complement;Geom. Ded. Vol. 9 (1980), pp. 307–316.Google Scholar
  15. 15.
    M.L. Narayana Rao, K. Kuppuswamy Rao, and K. Satyanarayana, A third flag transitive plane of order 27,Houston J. Math. Vol. 10 (1984) pp. 127–145.Google Scholar
  16. 16.
    C. Charnes, A pair of mutually polar translation planes, to appear inArs Combin.Google Scholar
  17. 17.
    W. Kantor, Spreads, translation planes and Kerdok sets I,SIAM J. Alg. Disc. Meth. Vol. 3, (1982), pp. 151–165.Google Scholar
  18. 17.
    T. Oyama, On quasifields,Osaka J. Math. Vol. 22, (1985), pp. 35–54.Google Scholar
  19. 18.
    D. Jungnickel, Maximal partial spreads and transversalfree translation nets.J. of Comb. Theory (A) 62 (1993), 66–92.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • U. Dempwolff
    • 1
  1. 1.FB Mathematik UniversitätKaiserslautern

Personalised recommendations