Journal of Muscle Research & Cell Motility

, Volume 8, Issue 5, pp 418–427

Golgi stain identifies three types of fibres in fish muscle

  • Clara Franzini-Armstrong
  • William F. Gilly
  • Eva Aladjem
  • Denah Appelt
Papers

Summary

Using Golgi infiltration we have studied the structure and disposition of tranverse tubules in muscle fibres from the sand dab fin musculature. Three types of fibres differ significantly from each other in the extent and disposition of junctions between transverse tubules and the sarcoplasmic reticulum. These correlate with the three groups of fibres having different relaxation times shown in the accompanying paper (Gilly & Aladjem, 1987). Fibres with very slow relaxation (tonic fibres) correspond to those which have an unusual disposition of T tubules and very rare T-SR junctions. In the fast twitch fibres the peripheral T tubules segments converge into tangentially arranged tubules before joining the plasmalemma.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altringam, J. D. &Johnston, I. A. (1979) Forcevelocity relationship of skinned fibres isolated from dogfish myotomal muscle.J. Physiol 319, 85.Google Scholar
  2. Akster, H. A. (1985) Morphometry of muscle fibre types in the carp (Cyprinus carpio, L.).Cell Tissue Res. 241, 193–201.Google Scholar
  3. Akster, H. A., Granzier, H. L. M. &Keurs, H. E. D. J. (1985) A comparison of quantitative ultrastructural and contractile characteristics of muscle fibre types of the perch.Perca fluviatilis. J. Comp. Physiol. 155, 685–91.Google Scholar
  4. Bone, Q. (1964) Patterns of muscular innervation.Int. Rev. Neurobiol. 6, 99–147.Google Scholar
  5. Bone, Q., Kiceniuk, J. &Jones, D. R. (1978) On the role of the different fibre types in fish myotomes at intermediate swimming speeds.Fish Bull. 76(2), 691–9.Google Scholar
  6. Bone, Q., Johnstone, I. A., Pulsford, A. &Ryan, R. P. (1986) Contractile properties and ultrastructure of three types of muscle fibres in the dogfish myotome.J. Musc. Res. Cell Motility 7, 547–61.Google Scholar
  7. Dulhunty, A. F. (1984) Heterogeneity of T-tubule geometry in vertebrate skeletal muscle fibres.J. Musc. Res. Cell Motility 5, 333–48.Google Scholar
  8. Dulhunty, A. F. &Dlutowsky, M. (1979) Fibre types in red and white segments of rat sternomastoid muscle.Am. J. Anat. 156, 51–9.Google Scholar
  9. Eisenberg, B. R. (1983) Quantitative ultrastructure of mammalian skeletal muscle. InHandbook of Physiology, Section 10,Skeletal Muscle (edited byPeachey, L. D. andAdrian, R. H.), pp. 73–112. American Physiological Society Baltimore, Maryland.Google Scholar
  10. Eisenberg, B. &Kuda, A. M. (1976) Discrimination between fibre populations in mammalian skeletal muscle by using ultrastructural parameters.J. Ultrastructure Res. 54, 776–88.Google Scholar
  11. Eisenberg, B., Kuda, A. M. &Peter, J. B. (1974) Stereological analysis of mammalian skeletal muscle. I Soleus muscle of the adult guinea pig.J. Cell Biol. 60, 732–54.Google Scholar
  12. Egginton, S. &Johnston, I. A. (1982) A morphometric analysis of regional differences in myotonal muscle ultrastructure in the juvenile eel (Anguilla anguilla, L.).Cell Tissue Res 222, 579–96.Google Scholar
  13. Flitney, F. W. &Johnston, I. A. (1979) Mechanical properties of isolated fish red and white muscle fibres,J. Physiol. 295, 49.Google Scholar
  14. Flood, P. R. (1979) The vascular supply of the three fibre types in the parietal trunk muscle of the atlantic hagfish (Myxine glutinosa, L.).Microvasc. Res. 17, 55–70.Google Scholar
  15. Flood, P. R. &Storm Mathisen, J. (1962) A third type of muscle fibre in the parietal muscle of the atlantic hagfishMyxine glutinosa L.Z. Zellforsch u mikroskop Anat. 58, 638–40.Google Scholar
  16. Franzini-Armstrong, C. (1973) Studies of the triad. IV Structure of the junction in frog slow fibresJ. Cell Biol. 56, 120–8.Google Scholar
  17. Franzini-Armstrong, C. (1986) The sarcoplasmic reticulum and the transverse tubules. InMyology (edited byEngel, A. G. andBanker, B. Q.), pp. 125–54 New York, McGraw-Hill.Google Scholar
  18. Franzini-Armstrong, C. &Peachey, L. D. (1982). A modified Golgi black reaction method for light and electron microscopy.J. Histochem. and Cytochem. 30, 99–105.Google Scholar
  19. Franzini-Armstrong, C. &Porter, K. R. (1964) Sarcolemmal invaginations constituting the T system in fish muscle fibres.J. Cell Biol. 22, 675–96.Google Scholar
  20. Franzini-Armstrong, C., Landmesser, L. &Pilar, G. (1975) Size and shape of transverse tubule openings in frog twitch muscle fibres.J. Cell. Biol. 64, 493–7.Google Scholar
  21. Franzini-Armstrong, C., Eastwood, A. E. &Peachey, L. D. (1986) Shape and disposition of clefts, tubules, and sarcoplasmic reticulum in long and short sarcomere fibres of crab and crayfish.Cell Tissue Res. 244, 9–19.Google Scholar
  22. Gilly, W. F. &Aladjem, E. (1987). Physiological properties of three muscle fibre types controlling dorsal fin movements in a flatfish,Citharichtus sordidus.J. Musc. Res. and Cell Motility 8, 407–17.Google Scholar
  23. Gilly, W. F. &Hui, C. S. (1980) Mechanical activation in slow and twitch skeletal muscle fibres of the frog.J. Physiol. 301, 137–56.Google Scholar
  24. Ginsborg, B. L. (1960) Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions.J. Physiol. 154, 581–98.Google Scholar
  25. Huxley, A. F. (1971) The activation of striated muscle and its mechanical response.Proc. Roy. Soc. Lond. B 178, 1–27.Google Scholar
  26. Johnston, I. A. (1982) Biochemistry of myosin and contractile properties of fish skeletal muscle.Molec. Physiol. 2, 15–29.Google Scholar
  27. Kilarski, W. (1967) The fine structure of striated muscle in teleosts.Z. Zellforsch. 79, 562–80.Google Scholar
  28. Kilarski, W. (1973) Cytomorphometry of sarcoplasmic reticulum in extrinsic eye muscles of the teleost (Tinca tinca, L.).Z. Zellforsch. 136, 535–44.Google Scholar
  29. Kilarski, W. &Bigaj, J. (1969) Organization and fine structure of extraocular muscles in Carassius and RanaZ. Zellforsch. 94, 194–204.Google Scholar
  30. Kilarski, W. &Kozlowska, M. (1983) Ultrastructural characteristics of the teleostean muscle fibres and their endings. The stickleback (Gastosteus aculeatus, L.).Z. Mikroskop. Anat. Forsch. 97, 1022–36.Google Scholar
  31. Korneliussen, H. &Nicolaysen, K. (1973) Ultrastructure of four types of striated muscle fibres in the Atlantic hagfish (Myxine glutinosa).Z. Zellforsch. 143, 273–90.Google Scholar
  32. Kryvi, H., Flood, P. &Guljaeu, D. (1980) The ultrastructure and vascular supply of the different types in the axial muscle of the sturgeonAcipenser stellatus.Cell Tissue Res. 212, 117–26.Google Scholar
  33. Nag, A. C. (1972) Ultrastructure and adenosinetriphosphatase activity of red and white muscle fibres of the caudal region of a fish,Salmo gairdneri.J. Cell Biol. 55, 42–57.Google Scholar
  34. Nakajima, Y. (1969) Fine structure of red and white muscle fibres and their neuromuscular junctions in the snake fish (Ophiocephalus argus).Tissue and cell 1, 229–46.Google Scholar
  35. Page, S. G. (1965) A comparison of the fine structure of frog slow and twitch muscle fibresJ. Cell Biol. 26, 477–97.Google Scholar
  36. Page, S. G. (1968) Fine structure of tortoise muscle.J. Physiol (Lond.) 197, 709–15.Google Scholar
  37. Page, S. G. (1969) Structure and some contractile properties of fast and slow muscles of chicken.J. Physiol. 205, 131–42.Google Scholar
  38. Peachey, L. D. (1982) A simple digital morphometry system for electron microscopy.Ultramicroscopy 8, 253–62.Google Scholar
  39. Peachey, L. D. &Huxley, A. F. (1962) Structural identification of twitch and slow striated muscle fibres of the frog.J. Cell Biol. 13, 177–180.Google Scholar
  40. Rowlerson, A., Scapolo, P. A., Mascarello, F., Carpene, E. &Veggetti, A. (1985) Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle.J. Musc. Res. Cell Motility 6, 601–41.Google Scholar
  41. Smith, D. S. (1961) The structure of insect fibrillar flight muscle. A study made with special reference to the membrane systems of the fiber.J. Biophys. Biochem. Cytol. 10 (4, part 2), 123–58.Google Scholar
  42. Takeuchi, A. (1959) Neuromuscular transmission of fish skeletal muscles investigated with intracellular microelectrodes.J. cell. comp. Physiol. 54, 211–20.Google Scholar
  43. Veratti, E. (1902) Ricerche sulla fine struttura della fibre muscolare striata.Mem. Ist. Lombardo Cl. Sci. Mat. Nat. 19, 87–133. Translated in (1961)J. Biophys. Biochem. Cytol.10, No. 4, suppl., 3–59.Google Scholar
  44. Willeuse, J. J. &De Ruiter, A. (1979) A quantitative identification of four types of fibres in the lateral musculature of immature European eelAnguilla anguilla L.Aquaculture 17, 105–11.Google Scholar
  45. Zampighi, E. G., Vergara, J. &Ramon, F. (1975) The conection between the T tubules and the plasma membrane in frog skeletal muscle.J. Cell Biol. 64, 734–40.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Clara Franzini-Armstrong
    • 1
  • William F. Gilly
    • 3
  • Eva Aladjem
    • 3
  • Denah Appelt
    • 2
  1. 1.Departments of Anatomy, Medical SchoolUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Departments of BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Hopkins Marine StationPacific GroveUSA

Personalised recommendations