Inventiones mathematicae

, Volume 47, Issue 2, pp 189–208 | Cite as

Intersection numbers for quotients of the complex 2-ball and Hilbert modular forms

  • Stephen S. Kudla
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baily, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2)84, 442–528 (1966)Google Scholar
  2. 2.
    Borel, A.: Compact Clifford-Klein forms of symmetric spaces, Topology2, 111–122 (1963)Google Scholar
  3. 3.
    Hecke, E.: Zur Theorie der elliptischen Modulfunctionen, Math. Ann.97, 210–242 (1927)Google Scholar
  4. 4.
    Hemperly, J.: The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain, Amer. J. Math.94, 1078–1100 (1972)Google Scholar
  5. 5.
    Hirzebruch, F.: Hilbert modular surfaces, L'Ens. Math.19, 183–281 (1973)Google Scholar
  6. 6.
    Hirzebruch, F.: Kurven auf den Hilbertschen Modulflächen und Klassenzahlrelation, Classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math. 412, p. 75–93, Berlin, Heidelberg, New York: Springer 1974Google Scholar
  7. 7.
    Hirzebruch, F., Zagier, D.: Intersection numbers of curves on Hilbert modular surfaces and modular forms of nebentypus, Inventiones math.36, 57–113 (1976)Google Scholar
  8. 8.
    Hirzebruch, F.: Topological Methods in Algebraic Geometry, Berlin, Heidelberg, New York: Springer 1966Google Scholar
  9. 9.
    Howe, R.: Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory (preprint)Google Scholar
  10. 10.
    Kodaira, K.: On compact complex analytic surfaces I, Ann. of Math.71, 111–151 (1960)Google Scholar
  11. 11.
    Millson, J.: Geometric construction of homology of arithmetic quotients (preprint)Google Scholar
  12. 12.
    Oda, T.: On modular forms associated with indefinite quadratic forms of signature (2,n−2), (preprint)Google Scholar
  13. 13.
    Schoenberg, B.: Indefinite Quaternion and Modulfunktionen, Math. Ann.113, 380–391 (1936)Google Scholar
  14. 14.
    Serre, J.P.: Corps Locaux, Paris: Hermann 1968Google Scholar
  15. 15.
    Siegel, C.L.: Indefinite quadratische Formen und Funktionentheorie, I & II, Math. Ann.124, 17–54 (1951); 364–387 (1952)Google Scholar
  16. 16.
    Shimura, G.: Arithmetic of Unitary Groups, Ann of Math.79 (2), 369–409 (1964)Google Scholar
  17. 17.
    Shintani, T.: On construction of holomorphic cusp forms of integral weight, Nagoya Math. J.,58, 83–126 (1975)Google Scholar
  18. 18.
    Zagier, D.: Modular Forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular Functions of One Variable VI, Bonn, Lecture Notes in Mathematics 627, Berlin, Heidelberg, New York: Springer 1976Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Stephen S. Kudla
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations