Advertisement

Inventiones mathematicae

, Volume 47, Issue 2, pp 171–188 | Cite as

Almost-primes represented by quadratic polynomials

  • Henryk Iwaniec
Article

Keywords

Quadratic Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comput.16, 363–367 (1962)Google Scholar
  2. 2.
    Buchstab, A.A.: Combinatorial intensification of the sieve method of Eratosthenes (in Russian). Uspehi Mat. Nauk22, no. 3 (135), 199–226 (1967)Google Scholar
  3. 3.
    Chen, J.-R.: On the distribution of almost-primes in an interval. Sci. Sinica18, 611–627 (1975)Google Scholar
  4. 4.
    Friedlander, J., Iwaniec, H.: Quadratic polynomials and quadratic forms, (to appear in Acta Math.),Google Scholar
  5. 5.
    Halberstam, H., Richert, H.-E.: Almost-primes in short intervals and arithmetic progressions (unpublished),Google Scholar
  6. 6.
    Hardy, G.H., Littlewood, J.E.: Some problems of Partitio Numerorum III. Acta Math.44, 1–70 (1923)Google Scholar
  7. 7.
    Hooley, C.: On the problem of divisors of quadratic polynomials. Acta Math.,110, 97–114 (1963)Google Scholar
  8. 8.
    Hooley, C.: On the greatest prime factor of a quadratic polynomial. Acta Math.117, 281–299 (1967)Google Scholar
  9. 9.
    Hooley, C.: On the Brun-Titchmarsh theorem. II. Proc. London Math. Soc.3 (30), 114–128 (1975)Google Scholar
  10. 10.
    Hooley, C.: On the Brun-Titchmarsh theorem. J. Reine Angew. Math.255, 60–79 (1972)Google Scholar
  11. 11.
    Iwaniec, H.: A new form of the error term in the linear sieve (to appear in Acta Arith.)Google Scholar
  12. 12.
    Kuhn, P.: Neue Abschätzungen auf Grund der Viggo Brunschen Siebmethode, pp. 160–168, 12. Skand. Math. Kongr., Lund, 1953Google Scholar
  13. 13.
    Kuhn, P.: Über die Primteiler eines Polynoms. Proc. Internat. Congress Math. Amsterdam,2, 35–37 (1954)Google Scholar
  14. 14.
    Levin, B.V.: A one-dimensional sieve (in Russian). Acta Arith.10, 387–397 (1964)Google Scholar
  15. 15.
    Motohashi, Y.: On some improvements of the Brun-Titchmarsh theorem, III. J. Math. Soc. Japan,27, 444–453 (1975)Google Scholar
  16. 16.
    Rademacher, H.: Beiträge zur Viggo Brunschen Methode in der Zahlentheorie. Abh. Math. Sem. Univ. Hamburg3, 12–30 (1924)Google Scholar
  17. 17.
    Ricci, G.: Su la congettura di Goldbach e la costante di Schnirelman. I. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Math. (2),6, 91–116 (1937)Google Scholar
  18. 18.
    Richert, H.-E.: Selberg's sieve with weights. Mathematika16, 1–22 (1969)Google Scholar
  19. 19.
    Schinzel, A., Sierpiński, W.: Sur certaines hypothèses concernant les nombres premiers. Acta Arith.4, 185–208 (1958)Google Scholar
  20. 20.
    Smith, H.J.S.: Report on the theory of numbers. Collected mathematical papers. Vol. I, reprinted, Chelsea 1965,Google Scholar
  21. 21.
    Wang, Y.: On sieve methods and some of their applications (in Chinese). Acta Math. Sinica9, 432–441 (1959)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Henryk Iwaniec
    • 1
    • 2
  1. 1.Institute of MathematicsPolish Academy of SciencesWarsawPoland
  2. 2.Institut Mittag-LefflerThe Royal Swedish Academy of SciencesDjursholmSweden

Personalised recommendations