Inventiones mathematicae

, Volume 47, Issue 2, pp 101–138 | Cite as

Invariant measures of horospherical flows on noncompact homogeneous spaces

  • S. G. Dani
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Introduction aux groupes arithmetiques. Publications de l'institute Mathématique de l'Université de Strasbourg XV. Paris: Hermann 1969Google Scholar
  2. 2.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  3. 3.
    Bowen, R.: Weak mixing and unique ergodicity on homogeneous spaces. Israel J. Math. in press (1978)Google Scholar
  4. 4.
    Dani, S.G.: Kolmogorov automorphisms on homogeneous spaces. Amer. J. Math.98, 119–163 (1976)Google Scholar
  5. 5.
    Dani, S.G.: Bernoullian translations and minimal horospheres on homogeneous spaces. J. Indian Math. Soc.40, 245–284 (1976)Google Scholar
  6. 6.
    Ellis, R., Perrizo, W.: Unique ergodicity of flows on homogeneous spaces (preprint)Google Scholar
  7. 7.
    Fürstenberg, H.: A Poisson formula for semi-simple Lie groups. Ann. of Math.77, 335–386 (1963)Google Scholar
  8. 8.
    Fürstenberg, H.: The unique ergodicity of the horospherical flow. Recent Advances in Topological Dynamics (A. Beck, ed.), pp. 95–115. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  9. 9.
    Fürstenberg, H.: A note on Borel's density theorem. Proc. Amer. Math. Soc.55, 209–212 (1976)Google Scholar
  10. 10.
    Garland, H., Raghunathan, M.S.: Fundamental domains for lattices in ℝ-rank 1 semi-simple Lie groups. Ann. of Math.92, 279–326 (1970)Google Scholar
  11. 11.
    Harish-Chandra: Spherical functions on a semi-simple Lie group, I. Amer. J. Math.80, 241–310 (1958)Google Scholar
  12. 12.
    Knapp, A.W., Williamson, R.E.: Poisson integrlas and semisimple groups. J. Analyse Math.24, 53–76 (1971)Google Scholar
  13. 13.
    Margulis, G.A.: Arithmetic properties of discrete subgroups. Uspehi Mat. Nauk 29:1, 49–98 (1974)=Russian Math. Surveys 29:1, 107–156 (1974)Google Scholar
  14. 14.
    Moore, C.C.: Compactifications of symmetric spaces. Amer. J. Math.,86, 201–218 (1964)Google Scholar
  15. 15.
    Moore, C.C.: Ergodicity of flows on homogeneous spaces. Amer. J. Math.88, 154–178 (1966)Google Scholar
  16. 16.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  17. 17.
    Rohlin, V.A.: Selected topics in the metric theory of dynamical systems, Uspehi Mat. Nauk (N.S.)4, No. 2 (30), 57–128 (1949)=Amer. Math. Soc. Transl (2)49, 171–239 (1966)Google Scholar
  18. 18.
    Veech, W.A.: Unique ergodicity of horospherical flow. Amer. J. Math.99, 827–859 (1977)Google Scholar
  19. 19.
    Warner, G.: Harmonic analysis on semisimple Lie groups I. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  20. 20.
    Weil, A.: L'integration dans les Groupes Topologiques et ses Applications. Paris: Hermann 1960Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • S. G. Dani
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations