Journal of Industrial Microbiology

, Volume 13, Issue 6, pp 361–366 | Cite as

Alternative method for rapidly screening microbial isolates for their potential to degrade volatile contaminants

  • Janet M. Strong-Gunderson
  • Anthony V. Palumbo
Article

Summary

A method is described for rapidly screening the metabolic potential of bacteria to oxidize semivolatile and volatile compounds as a sole carbon source. The method is based on automated system that utilizes MicroplatesTM manufactured by Biolog, Inc. (Hayward, CA, USA). This system detects bacterial respiratory activity from the oxidation of a carbon source introduced in volatile form. This is in contrast to the original design, which is based on inoculating a carbon source directly into each well. The 96-well (MT) microtiter plates contain nutrients and a tetrazolium dye. When a bacterial species is capable of oxidizing a volatile carbon substrate, the dye turns purple, and a spectrophotometric plate reader quantifies the response. As a test of this method 150 isolates, including isolates known to degrade some of the test compounds and negative controls were evaluated for their potential to oxidize carbon tetrachloride, toluene, ando-xylene. Thirty-seven isolates (25%) were qualitatively identified as contaminant oxidizers, and thirteen of these (35%) showed significant degradation capabilities for both toluene ando-xylene.

Key words

Bioremediation Volatile organic contaminants Carbon tetrachloride Toluene o-xylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balkwill, D.L. 1990. Deep-aquifer microorganisms. In: The Isolation of Microorganisms from Nature for Biotechnology Applications (Labeda, D.P., ed.), pp. 183–212, McGraw-Hill, New York.Google Scholar
  2. 2.
    Bedard, D.L., R. Unterman, L.H. Bopp, M.J. Brennan, M.L. Haberl and C. Johnson. 1986. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768.Google Scholar
  3. 3.
    Birch, R., R. Biver, R. Campagna, W.E. Gledhill, U. Pagga, J. Steber, H. Reust and W.J. Bontinck. 1989. Screening of chemicals for anaerobic biodegradability. Chemosphere 19: 1527–1550.Google Scholar
  4. 4.
    Bochner, B. 1989a. ‘Breathprints’ at the microbial level. ASM News 55: 536–539.Google Scholar
  5. 5.
    Bochner, B. 1989b. Sleuthing our bacterial identities. Nature (London) 339: 157–158.Google Scholar
  6. 6.
    Bochner, B.R. and M.A. Savageau. 1977. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl. Environ. Microbiol. 33: 434–444.Google Scholar
  7. 7.
    Carnahan, A.M., S.W. Joseph and J.M. Janda. 1989. Species identification ofAeromonas strains based on carbon substrate oxidation profiles. J. Clin. Microbiol. 27: 2128–2129.Google Scholar
  8. 8.
    Foght, J.M. and D.W.S. Westlake. 1988. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by aPseudomonas species. Can. J. Microbiol. 34: 1135–1141.Google Scholar
  9. 9.
    Fredrickson, J.K. and R.J. Hicks. 1987. Probing reveals many microbes beneath the earth's surface. ASM News 53: 78–79.Google Scholar
  10. 10.
    Gorden, R.W., T.C. Hazen and C.B. Fliermans. 1993. Rapid screening for bacteria capable of degrading toxic organic compounds. J. Microbiol. Methods 18: 339–347.Google Scholar
  11. 11.
    Kimura, B., M. Murakami and H. Fujisawa. 1990. Simple and rapid method for screening of heavy oil-degrading bacteria from the marine environment. Bull. Jap. Soc. Sci. Fish. 56: 1009.Google Scholar
  12. 12.
    Lauff, J.L., D.B. Steele, L.A. Coogan and J.M. Breitfeller. 1990. Degradation of ferric chelate of EDTA by a pure culture of anAgrobacterium sp. Appl. Environ. Microbiol. 50: 3346–3353.Google Scholar
  13. 13.
    Little, C.D., A.V. Palumbo, S.E. Herbes, M.E. Lidstrom, R.L. Tyndall and P.J. Gilmer. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951–956.Google Scholar
  14. 14.
    Maki, A.W., K.L. Dickson and J. Carins, Jr. 1980. Biotransformation and Fate of Chemicals in the Aquatic Environment. Am. Soc. for Microbiol., Washington DC. 150 pp.Google Scholar
  15. 15.
    Ruffo, C., E. Galli and A. Arpino. 1984. Comparison of methods for the biodegradability evaluation of soluble and insoluble organochemicals. Ecotoxicol. and Environ. Safety 8: 275–279.Google Scholar
  16. 16.
    Spain, J.C. and S.F. Nishino. 1987. Degradation of 1,4-dichlorobenzene by aPseudomonas sp. Appl. Environ. Microbiol. 53: 1010–1019.Google Scholar
  17. 17.
    Verschueren, K. 1991 Handbook of Environmental Data on Organic Chemicals. 2nd edn, 1336 p. Van Nostrand Reinhold, New York, NY.Google Scholar
  18. 18.
    Volskay, V.T. and C.P.L. Grady, Jr. 1990 Respiration inhibition kinetic analysis. Water Res. 24: 863–874.Google Scholar

Copyright information

© Society for Industrial Microbiology 1994

Authors and Affiliations

  • Janet M. Strong-Gunderson
    • 1
  • Anthony V. Palumbo
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations