Journal of Industrial Microbiology

, Volume 9, Issue 1, pp 53–61 | Cite as

Detoxification of polycyclic aromatic hydrocarbons by fungi

  • John B. Sutherland


The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or carcinogenic. A diverse group of fungi, includingAspergillus ochraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, andSyncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. Unsubstituted PAHs are oxidized initially to arene oxides,trans-dihydrodiols, phenols, quinones, and tetralones. Phenols andtrans-dihydrodiols may be further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the mutagenicity and thus detoxify the PAHs.

key words

Bioremediation Biotransformation Cytochrome P-450 Metabolism PAHs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aust, S.D. 1990. Degradation of environmental pollutants byPhanerochaete chrysosporium. Microb. Ecol. 20: 197–209.Google Scholar
  2. 2.
    Azari, M.R. and A. Wiseman. 1982. Purification and characterization of the cytochrome P-448 component of a benzo[a]pyrene hydroxylase fromSaccharomyces cerevisiae. Anal. Biochem. 122: 129–138.Google Scholar
  3. 3.
    Azari, M.R. and A. Wiseman. 1982. Evaluation of immobilized cytochrome P-448 fromSaccharomyces cerevisiae using permeabilized whole cell, microsomal fraction and highly purified reconstituted forms, with benzopyrene-3-monooxygenase activity. Enzyme Microb. Technol. 4: 401–404.Google Scholar
  4. 4.
    Blair, J.M., D.A. Crossley and S. Rider. 1989. Effects of naphthalene on microbial activity and nitrogen pools in soillitter microcosms. Soi Biol. Biochem. 21: 507–510.Google Scholar
  5. 5.
    Bumpus, J.A. 1989. Biodegradation of polycyclic aromatic hydrocarbons byPhanerochaete chrysosporium. Appl. Environ. Microbiol. 55: 154–158.Google Scholar
  6. 6.
    Bumpus, J.A. and S.D. Aust. 1987. Biodegradation of environmental pollutants by the white rot fungusPhanerochaete chrysosporium: Involvement of the lignin degrading system. BioEssays 6: 166–170.Google Scholar
  7. 7.
    Bumpus, J.A., M. Tien, D. Wright and S.D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436.Google Scholar
  8. 8.
    Cerniglia, C.E. 1982. Initial reactions in the oxidation of anthracene byCunninghamella elegans. J. Gen. Microbiol. 128: 2055–2061.Google Scholar
  9. 9.
    Cerniglia, C.E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30: 31–71.Google Scholar
  10. 10.
    Cerniglia, C.E. 1984. Microbial transformation of aromatic hydrocarbons. In: Petroleum Microbiology (Atlas, R.M., ed.), pp. 99–128. Macmillan, New York.Google Scholar
  11. 11.
    Cerniglia, C.E., J.R. Althaus, F.E. Evans, J.P. Freeman, R.K. Mitchum and S.K. Yang. 1983. Stereochemistry and evidence for an arene oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem. Biol. Interact. 44: 119–132.Google Scholar
  12. 12.
    Cerniglia, C.E., W.L. Campbell, J.P. Freeman and F.E. Evans. 1989. Identification of a novel metabolite in phenanthrene metabolism by the fungusCunninghamella elegans. Appl. Environ. Microbiol. 55: 2275–2279.Google Scholar
  13. 13.
    Cerniglia, C.E., W.L. Campbell, P.P. Fu, J.P. Freeman and F.E. Evans. 1990. Stereoselective fungal metabolism of methylated anthracenes. Appl. Environ. Microbiol. 56: 661–668.Google Scholar
  14. 14.
    Cerniglia, C.E. and S.A. Crow. 1981. Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129: 9–13.Google Scholar
  15. 15.
    Cerniglia, C.E., R.H. Dodge and D.T. Gibson. 1980. Studies on the fungal oxidation of polycyclic aromatic hydrocarbons. Bot. Mar. 23: 121–124.Google Scholar
  16. 16.
    Cerniglia, C.E., R.H. Dodge and D.T. Gibson. 1982. Fungal oxidation of 3-methylcholanthrene: Formation of proximate carcinogenic metabolites of 3-methylcholanthrene. Chem. Biol. Interact. 38: 161–173.Google Scholar
  17. 17.
    Cerniglia, C.E., J.P. Freeman, J.R. Althaus and C. Van Baalen. 1984. Biotransformation and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. In: Toxicity Screening Procedures Using Bacterial Systems (Liu, D. and B.J. Dutka, eds.), pp. 381–394. Marcel Dekker, New York.Google Scholar
  18. 18.
    Cerniglia, C.E., J.P. Freeman and R.K. Mitchum. 1982. Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl. Environ. Microbiol. 43: 1070–1075.Google Scholar
  19. 19.
    Cerniglia, C.E., J.P. Freeman, G.L. White, R.H. Heflich and D.W. Miller. 1985. Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon 1-nitropyrene. Appl. Environ. Microbiol. 50: 649–655.Google Scholar
  20. 20.
    Cerniglia, C.E., P.P. Fu and S.K. Yang. 1982. Metabolism of 7-methylbenz[a]anthracene and 7-hydroxymethylbenz[a]anthracene byCunninghamella elegans. Appl. Environ. Microbiol. 44: 682–689.Google Scholar
  21. 21.
    Cerniglia, C.E., P.P. Fu and S.K. Yang. 1983. Regio-and stereoselective metabolism of 4-methylbenz[a]anthracene by the fungusCunninghamella elegans. Biochem. J. 216: 377–384.Google Scholar
  22. 22.
    Cerniglia, C.E., P.P. Fu and S.K. Yang. 1983. Microbial metabolism of 4-,7-,10-methylbenz[a]anthracenes. In: Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement (Cooke, M and A.J. Dennis, eds.), pp. 283–292, Battelle Press, Columbus.Google Scholar
  23. 23.
    Cerniglia, C.E. and D.T. Gibson. 1977. Metabolism of naphthalene byCunninghamella elegans. Appl. Environ. Microbiol. 34: 363–370.Google Scholar
  24. 24.
    Cerniglia, C.E. and D.T. Gibson. 1978. Metabolism of naphthalene by cell extracts ofCunninghamella elegans. Arch. Biochem. Biophys. 1986: 121–127.Google Scholar
  25. 25.
    Cerniglia, C.E. and D.T. Gibson. 1979. Oxidation of benzo[a]pyrene by the filamentous fungusCunninghamella elegans. J. Biol. Chem. 254: 12174–12180.Google Scholar
  26. 26.
    Cerniglia, C.E. and D.T. Gibson. 1980. Fungal oxidation of benzo[a]pyrene and (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene: Evidence for the formation of a benzo[a]pyrene 7,8-diol-9,10-epoxide. J. Biol. Chem. 255: 5159–5163.Google Scholar
  27. 27.
    Cerniglia, C.E. and D.T. Gibson, 1980.Fungal oxidation of (±)-9,10-dihydroxy-9,10-dihydrobenzo[a]pyrene: Formation of diastereomeric benzo[a]pyrene 9,10-diol-7,8-epoxides. Proc. Natl. Acad. Sci. USA 77: 4554–4558.Google Scholar
  28. 28.
    Cerniglia, C.E., R.L. Hebert, P.J. Szaniszlo and D.T. Gibson, 1978. Fungal transformation of naphthalene. Arch. Microbiol. 117: 135–143.Google Scholar
  29. 29.
    Cerniglia, C.E. and M.A. Heitkamp 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment (Varanasi, U., ed.), pp. 41–68, CRC Press, Boca Raton.Google Scholar
  30. 30.
    Cerniglia, C.E., D.W. Kelly, J.P. Freeman and D.W. Miller. 1986. Microbial metabolism of pyrene. Chem. Biol. Interact. 57: 203–216.Google Scholar
  31. 31.
    Cerniglia, C.E., K.J. Lambert, D.W. Miller and J.P. Freeman. 1984. Transformation of 1- and 2-methylnaphthalene byCunninghamella elegans. Appl. Environ. Microbiol 47: 111–118.Google Scholar
  32. 32.
    Cerniglia, C.E., W. Mahaffey and D.T. Gibson 1980. Fungal oxidation of benzo[a]pyrene: Formation of (-)-trans-7,8-dihydroxy-7, 8-dihydrobenzo[a]pyrene byCunninghamella elegans. Biochem. Biophys. Res. Commun 94: 226–232.Google Scholar
  33. 33.
    Cerniglia, C.E., D.W. Miller, S.K. Yang and J.P. Freeman. 1984. Effects of a fluoro substituent on the fungal metabolism of 1-fluoronaphthalene. Appl. Environ. Microbiol. 48: 294–300.Google Scholar
  34. 34.
    Cerniglia, C.E., J.B. Sutherland and S.A. Crow. 1992 Fungal metabolism of aromatic hydrocarbons. In: Microbial Degradation of Natural Products (Winkelmann, G., ed.), VCH Verlagsgesellschaft, Weinheim.Google Scholar
  35. 35.
    Cerniglia, C.E., G.L. White and R.H. Heflich. 1985. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch. Microbiol. 143: 105–110.Google Scholar
  36. 36.
    Cerniglia, C.E. and S.K. Yang. 1984. Stereoselective metabolism of anthracene and phenanthrene by the fungusCunninghamella elegans. Appl. Environ. Microbiol. 47: 119–124.Google Scholar
  37. 37.
    Crow, S.A. and S.L. Bell. 1981. Effects of aromatic hydrocarbons on growth ofcandida maltosa andCandida lipolytica. Dev. Ind. Microbiol. 22: 437–442.Google Scholar
  38. 38.
    Crow, S.A., S.L. Bell and D.G. Ahearn. 1980. The uptake of aromatic and branched chain hydrocarbons by yeast. Bot. Mar. 23: 117–120.Google Scholar
  39. 39.
    Datta, D. and T.B. Samanta. 1988. Effect of inducers on metabolism of benzo[a]pyrene in vivo and in vitro: Analysis by high pressure liquid chromatography. Biochem. Biophys. Res. Commun. 155: 493–502.Google Scholar
  40. 40.
    Davis, P.J. 1988. Microbial models of mammalian drug metabolism. Dev. Ind. Microbiol. 29: 197–219.Google Scholar
  41. 41.
    Dipple, A., S.C. Cheng and C.A.H. Bigger. 1990. Polycyclic aromatic hydrocarbon carcinogens. In: Mutagens and Carcinogens in the Diet (Pariza, M.W., H.-U. Aeschbacher, J.S. Felton and S. Sato, eds.), pp. 109–127, Wiley-Liss, New York.Google Scholar
  42. 42.
    Dutta, D., D.K. Ghosh, A.K. Mishra and T.B. Samanta. 1983. Induction of benzo[a]pyrene hydroxylase inAspergillus ochraceus TS: Evidences of multiple forms of cytochrome P-450. Biochem. Biophys. Res. Commun. 115: 692–699.Google Scholar
  43. 43.
    Ferris, J.P., M.J. Fasco, F.L. Stylianopoulou, D.M. Jerina, J.W. Daly and A.M. Jeffrey. 1973. Monooxygenase activity inCunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch. Biochem. Biophys. 156: 97–103.Google Scholar
  44. 44.
    Ferris, J.P., L.H. MacDonald, M.A. Patrie and M.A. Martin. 1976. Aryl hydrocarbon hydroxylase activity in the fungusCunninghamella bainieri: Evidence for the presence of cytochrome P-450. Arch. Biochem. Biophys. 175: 443–452.Google Scholar
  45. 45.
    Fu P.P., C.E. Cerniglia, M.W. Chou and S.K. Yang. 1983. Differences in the stereoselective metabolism of 7-methylbenz[a]anthracene and 7-hydroxymethylbenz[a]anthracene by rat liver microsomes and by the filamentous fungusCunninghamella elegans. In: Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement (Cooke, M. and A.J. Dennis, eds.), pp. 531–543, Battelle Press, Columbus.Google Scholar
  46. 46.
    George, E.J. and R.D. Neufeld. 1989. Degradation of fluorene in soil by fungusPhanerochaete chrysosporium. Biotechnol. Bioeng. 33: 1306–1310.Google Scholar
  47. 47.
    Ghosh, D.K., D. Dutta, T.B. Samanta and A.K. Mishra. 1983. Microsomal benzo[a]pyrene hydroxylase inAspergillus ochraceus TS: Assay and characterization of the enzyme system. Biochem. Biophys. Res. Commun. 113: 497–505.Google Scholar
  48. 48.
    Gibson, D.T. 1982. Microbial degradation of hydrocarbons. Toxicol. Environ. Chem. 5: 237–250.Google Scholar
  49. 49.
    Gibson, D.T. and V. Subramanian. 1984. Microbial degradation of aromatic hydrocarbons. In: Microbial Degradation of Organic Compounds (Gibson, D.T., ed.), pp. 181–252, Marcel Dekker, New York.Google Scholar
  50. 50.
    Haemmerli, S.D., M.S.A. Leisola, D. Sanglard and A. Fiechter. 1986. Oxidation of benzo[a]pyrene by extracellular ligninases ofPhanerochaete chrysosporium: Veratryl alcohol and stability of ligninase. J. Biol. Chem. 261: 6900–6903.Google Scholar
  51. 51.
    Hammel, K.E. 1989. Organopollutant degradation by ligninolytic fungi. Enzyme Microb. Technol. 11: 776–777.Google Scholar
  52. 52.
    Hammel, K.E., B. Kalyanaraman and T.K. Kirk. 1986. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins byPhanerochaete chrysosporium ligninase. J. Biol. Chem. 261: 16948–16952.Google Scholar
  53. 53.
    Hofmann, K.H. 1986. Oxidation of naphthalene bySaccharomyces cerevisiae andCandida utilis. J. Basic Microbiol 26: 109–111.Google Scholar
  54. 54.
    Holland, H.L., S.H. Khan, D. Richards and E. Riemland. 1986. Biotransformation of polycyclic aromatic compounds by fungi. Xenobiotica 16: 733–741.Google Scholar
  55. 55.
    Kapoor, M. and W.S. Lin. 1984. Studies on the induction of aryl hydrocarbon (benzo[a]pyrene) hydroxylase inNeurospora crassa, and its suppression by sodium selenite. Xenobiotica 14: 903–915.Google Scholar
  56. 56.
    Kelly, S.L., D.E. Kelly, D.J. King and A. Wiseman. 1985. Interaction between yeast cytochrome P-450 and chemical carcinogens. Carcinogenesis 6: 1321–1325.Google Scholar
  57. 57.
    King, D.J., M.R. Azari and A. Wiseman. 1982. The induction of cytochrome P-448 dependent benzo[a]pyrene hydroxylase inSaccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 105: 1115–1121.Google Scholar
  58. 58.
    King, D.J., M.R. Azari and A. Wiseman. 1984. Studies on the properties of highly purified cytochrome P-448 and its dependent activity benzo[a]pyrene hydroxylase, fromSaccharomyces cerevisiae. Xenobiotica 14: 187–206.Google Scholar
  59. 59.
    King, D.J. and A. Wiseman. 1987. Yeast cytochrome P-448 enzymes and the activation of mutagens, including carcinogens. In: Enzyme Induction, Mutagen Activation and Carcinogen Testing in Yeast (Wiseman, A., ed.), pp. 115–167, Ellis Horwood, Chichester.Google Scholar
  60. 60.
    Kinoshita, N. and H.V. Gelboin. 1978. β-Glucuronidase catalyzed hydrolysis of benzo[a]pyrene-3-glucuronide and binding to DNA. Science 199: 307–309.Google Scholar
  61. 61.
    Libor, S., J.P. Bloxsidge, J.A. Elyidge, J.R. Jones, L.F.J. Woods and A. Wiseman. 1980. Interaction of purified yeast cytochrome P-450 and labelled benzo[a]pyrene studied by tritium nuclear-magnetic-resonance spectroscopy. Biochem. Soc. Trans. 8: 99–100.Google Scholar
  62. 62.
    Lijinsky, W. 1991. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259: 251–261.Google Scholar
  63. 63.
    Lin, W.S. and M. Kapoor. 1979. Induction of aryl hydrocarbon hydroxylase inNeurospora crassa by benzo[a]pyrene. Curr. Microbiol. 3: 177–180.Google Scholar
  64. 64.
    McMillan, D.C., P.P. Fu and C.E. Cerniglia. 1987. Stereoselective fungal metabolism of 7,12-dimethylbenz[a]anthracene: Identification and enantiomeric resolution of a K-region dihydrodiol. Appl. Environ. Microbiol. 53: 2560–2566.Google Scholar
  65. 65.
    McMillan, D.C., P.P. Fu, J.P. Freeman, D.W. Miller and C.E. Cerniglia. 1988. Microbial metabolism and detoxification of 7,12-dimethylbenz[a]anthracene. J. Ind. Microbiol. 3: 211–225.Google Scholar
  66. 66.
    Meier, P. and J.-D. Aubort. 1988. Polycyclic aromatic hydrocarbons in dried mushrooms. Mitt. Geb. Lebensmittelunters. Hyg. 79: 433–439.Google Scholar
  67. 67.
    Millemann, R.E., W.J. Birge, J.A. Black, R.M. Cushman, K.L. Daniels, P.J. Franco, J.M. Giddings, J.F. McCarthy and A.J. Stewart. 1984. Comparative acute toxicity to aquatic organisms of components of coal-derived synthetic fuels. Trans. Am. Fish. Soc. 113: 74–85.Google Scholar
  68. 68.
    Millner, G.C., P.P. Fu and C.E. Cerniglia. 1986. Microbial transformation of 6-nitrobenzo[a]pyrene. J. Toxicol. Environ. Health 19: 519–530.Google Scholar
  69. 69.
    Morgan, P., S.T. Lewis and R.J. Watkinson. 1991. Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34: 693–696.Google Scholar
  70. 70.
    Nanno, M., M. Morotomi, H. Takayama, T. Kuroshima, R. Tanaka and M. Mutai. 1986. Mutagenic activation of biliary metabolites of benzo[a]pyrene by β-glucuronidasepositive bacteria in human faeces. J. Med. Microbiol. 22: 351–355.Google Scholar
  71. 71.
    Newell, K., J.C. Frankland and J.B. Whittaker. 1987. Effects on microflora of using naphthalene or X-rays to reduce arthropod populations in the field. Biol. Fertil. Soils 3: 11–13.Google Scholar
  72. 72.
    Pothuluri, J.V., J.P. Freeman, F.E. Evans and C.E. Cerniglia. 1990. Fungal transformation of fluoranthene. Appl. Environ. Microbiol. 56: 2974–2983.Google Scholar
  73. 73.
    Pothuluri, J.V., R.H. Heflich and C.E. Cerniglia. 1991. Metabolism and detoxification of fluoranthene byCunninghamella elegans. Abstr. Annu. Meet. Am. Soc. Microbiol., p 261.Google Scholar
  74. 74.
    Renwick, A.G. and B.S. Drasar. 1976. Environmental carcinogens and large bowel cancer. Nature (Lond.) 263: 234–235.Google Scholar
  75. 75.
    Rosenkranz, H.S. and R. Mermelstein. 1983. Mutagenicity and genotoxicity of nitroarenes: All nitro-containing chemicals were not created equal. Mutat. Res. 114: 217–267.Google Scholar
  76. 76.
    Sanglard, D., M.S.A. Leisola and A. Fiechter. 1986. Role of extracellular ligninases in biodegradation of benzo[a]pyrene byPhanerochaete chrysosporium. Enzyme Microb. Technol. 8: 209–212.Google Scholar
  77. 77.
    Sivaswamy, S.N., B. Balachandran and V.M. Sivaramakrishnan. 1990. Polynuclear aromatic hydrocarbons in South Indian diet. Curr. Sci. 59: 480–481.Google Scholar
  78. 78.
    Sivaswamy, S.N. and B. Nagarajan. 1991. Pan fry cooking induces the formation of polycyclic aromatic hydrocarbons in meat. Med. Sci. Res. 19: 289–290.Google Scholar
  79. 79.
    Smith, R.V. and J.P. Rosazza. 1974. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161: 551–558.Google Scholar
  80. 80.
    Sutherland, J.B., A.L. Selby, J.P. Freeman, F.E. Evans, and C.E. Cerniglia. 1991. Metabolism of phenanthrene byPhanerochaete chrysosporium. Appl. Environ. Microbiol. 57, 3310–3316.Google Scholar
  81. 81.
    Thakker, D.R., H. Yagi, W. Levin, A.W. Wood, A.H. Conney and D.M. Jerina. 1985. Polycyclic aromatic hydrocarbons: Metabolic activation to ultimate carcinogens. In: Bioactivation of Foreign Compounds (Anders, M.W., ed.), pp. 177–242, Academic Press, Orlando.Google Scholar
  82. 82.
    Wackett, L.P. and D.T. Gibson. 1982. Metabolism of xenobiotic compounds by enzymes in cell extracts of the fungusCunninghamella elegans. Biochem. J. 205: 117–122.Google Scholar
  83. 83.
    Wiseman, A. and L.F.J. Woods. 1979. Benzo[a]pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. J. Chem. Technol. Biotechnol. 29: 320–324.Google Scholar
  84. 84.
    Wong, L.K., J. Dru, L.-S. Lin and J. Knapp. 1983. Metabolism of 7,12-dimethylbenz[a]anthracene byCunninghamella elegans. Appl. Environ. Microbiol. 46: 1239–1242.Google Scholar
  85. 85.
    Woods, L. and A. Wiseman. 1978. Possible removal of benzo[a]pyrene from some foods using cytochrome P-450 from brewer's yeast. J. Sci. Food Agric. 29: 1096–1097.Google Scholar
  86. 86.
    Woods, L.F.J. and A. Wiseman. 1979. Metabolism of benzo[a]pyrene by the cytochrome P-450/P-448 ofSaccharomyces cerevisiae. Biochem. Soc. Trans. 7: 124–127.Google Scholar
  87. 87.
    Woods, L.F.J. and A. Wiseman. 1980. Benzo[a]pyrene hydroxylase fromSaccharomyces cerevisiae: Substrate binding, spectral and kinetic data. Biochim. Biophys. Acta 613: 52–61.Google Scholar
  88. 88.
    Wu, J. and L.K. Wong. 1981. Microbial transformations of 7,12-dimethylbenz[a]anthracene. Appl. Environ. Microbiol. 41: 843–845.Google Scholar

Copyright information

© Society for Industrial Microbiology 1992

Authors and Affiliations

  • John B. Sutherland
    • 1
  1. 1.Microbiology DivisionNational Center for Toxicological Research, Food and Drug AdministrationJeffersonU.S.A.

Personalised recommendations