Journal of Industrial Microbiology

, Volume 8, Issue 4, pp 213–221 | Cite as

Biofilms: An ESEM evaluation of artifacts introduced during SEM preparation

  • Brenda Little
  • Patricia Wagner
  • Richard Ray
  • Robert Pope
  • Raymond Scheetz
Review

Summary

Descriptions of biofilms and their elemental compositions based on scanning electron micrographs and energy dispersive x-ray analysis cannot be related to the original condition of the biofilm on the surface. Solvent replacement of water removes extracellular polymeric material and reduces the concentration of elements bound within the biofilm. In the wet state, bacteria and microalgae are enmeshed in a gelatinous film that is either removed or dried to a thin inconspicuous residue during sample preparation for scanning electron microscopy. The environmental scanning electron microscope provides a fast, accurate image of biofilms, their spatial relationship to the substratum and elemental composition.

Key words

Biofilm Scanning electron microscope Environmental scanning electron microscope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, R.E. 1975. Applied chemistry at protein interfaces. In: Advances in Chemistry, Series 145. American Chemistry Society, Washington, D.C., 399 pp.Google Scholar
  2. 2.
    Battersby, B.L. 1988. Sulphate-reducing bacteria. In: Methods in Aquatic Bacteriology (Austin, B., ed.), pp. 269–299, John Wiley and Sons, NY.Google Scholar
  3. 3.
    Beaman, D.R., J.A. Isasi. 1974. Electron Beam Microanalysis. ASTM STP 506, Philadelphia, PA.Google Scholar
  4. 4.
    Blunn, G. 1986. Biological fouling of copper and copper alloys. In: Biodeterioration VI, pp. 567–575, CAB Int., Slough, Barkshire.Google Scholar
  5. 5.
    Chandra, D., P. Roy, A.K. Mishra, J.N. Chakrabarti and B. Sengupta. 1979. Microbial removal of organic sulfur from coal. Fuel 58: 549.Google Scholar
  6. 6.
    Characklis, W., M. Turakhia and N. Zelver. 1990. Transport and interfacial transfer phenomena. Biofilms. (Characklis, W.G. and K.C. Marshall, eds.), pp. 265–340, John Wiley and Sons, New York, NY.Google Scholar
  7. 7.
    Ciba Foundation Symposium. 1980. Adhesion and Microorganism Pathogenicity. Pitman Medical Press, Bath, Avon.Google Scholar
  8. 8.
    Cooksey K.E. and B. Cooksey. 1986. Adhesion of fouling diatoms to surfaces: some biochemistry. In: Algal Biofouling (Evans, L.V. and Hoagland, K.D., eds.), pp. 41–53, Elsevier, New York, NY.Google Scholar
  9. 9.
    Corpe W.A. 1975. Metal-binding properties of surface materials from marine bacteria. Dev. Industr. Microbiol. 16: 249–255.Google Scholar
  10. 10.
    Costerton, J.W. and G.G. Geesey. 1986. The microbial ecology of surface colonization and of consequent corrosion. In: Biologically Induced Corrosion (Dexter, S.C., ed.), pp. 223–232. NACE, Houston.Google Scholar
  11. 11.
    Costerton, J.W., G.G. Geesey and K.J. Cheng, 1978. How bacteria stick. Sci. Am. 238: 86–95.Google Scholar
  12. 12.
    Daniel, G.F., A.H.L. Chamberlain, and E.B.G. Jones. 1980. Ultrastructural observations on the marine fouling diatom Amphora. Helgolander Wiss. Meeresunters, 34: 123–149.Google Scholar
  13. 13.
    P. Duncumb and S.J.B. Reed. 1968. The calculation of stopping power and backscatter effects in the electron probe microanalysis. In: Quantitative Electron Probe Microanalysis (Heinrich, K.F.J., ed.), NBS Special Publication 298, p. 133.Google Scholar
  14. 14.
    Ehrlich, H.L. 1981. Geomicrobiology. Marcel Dekker, New York, NY.Google Scholar
  15. 15.
    Ehrlich, H.L. and C.L. Brierley. 1990. Microbial Mineral Recovery. McGraw-Hill Publishing Co., New York, NY.Google Scholar
  16. 16.
    Grady, C.P.L. and H.C. Lim. 1980 Biological Wastewater Treatment. Marcel Dekker. New York, NY.Google Scholar
  17. 17.
    Gudas, J.P. and H.P. Hack. 1979. Sulfide-induced corrosion of copper-nickel alloys. Corrosion 35: 67–73.Google Scholar
  18. 18.
    Heinrich, K.F.J. 1986. Proc. 11th International Conference, X-Ray Optics and Microanalysis, London, Ontario.Google Scholar
  19. 19.
    Henke, B.L., P. Lee, T.J. Tanaka, R.L. Shimabukuro and B.K. Fujikawa. 1982. Atomic Data and Nuclear Data Tables 27: 1–144.Google Scholar
  20. 20.
    Kargi, F. and J.M. Robinson. 1982. Microbial desulfurization of coal by thermophilic microorganismsSulfolobus acidocaldarius. Biotechnol. Bioeng. 24: 2115.Google Scholar
  21. 21.
    Lawrence, R.W. and A. Bruynesteyn. 1983. Biological preoxidation to enhance gold and silver recovery from refractory pyritic ores and concentrates. CIM Bull. 76: 107.Google Scholar
  22. 22.
    Little, B., R. Ray, P. Wagner, Z. Lewandowski, W.C. Lee, W.G. Characklis and F. Mansfeld. 1990. Electrochemical behavior of stainless steels in natural seawater. Corrosion/90, paper no. 150, NACE, Houston.Google Scholar
  23. 23.
    Little, B., P. Wagner and J. Jacobus. 1988. The impact of sulfate-reducing bacteria on welded copper-nickel seawater piping systems. Mat. Perf. 27: 57–61.Google Scholar
  24. 24.
    Little, B., P. Wagner, J. Jacobus and L. Janus. 1989. Evaluation of microbiologically induced corrosion in an estuary. Estuaries 12: 138–141.Google Scholar
  25. 25.
    Little, B.J., P. Wagner, J.S. Maki, M. Walch and R. Mitchell. 1986. Factors influencing the adhesion of microorganisms to surfaces. J. Adhesion 20: 187.Google Scholar
  26. 26.
    Little, B., P. Wagner and F. Mansfeld. 1991. An overview of microbiologically influenced corrosion of metals and alloys. International Materials Review, in press.Google Scholar
  27. 27.
    Little, B., P. Wagner, R. Ray and J. Jones. 1990. Microbiologically influenced corrosion of copper alloys in saline water containing sulfate-reducing bacteria. Corrosion/91, paper no. 101, NACE, Houston.Google Scholar
  28. 28.
    Mansfeld, F., A. Postyn, H. Shih, J. Devinny, R. Islander and C.L. Chen. 1990. Corrosion monitoring and control in concrete sewer pipes. In: Proc. Corrosion/90, paper no. 113, NACE, Houston.Google Scholar
  29. 29.
    Marshall, K.C. 1976. Interfaces in Microbial Ecology. Harvard University Press, Cambridge, MA.Google Scholar
  30. 30.
    Marszalek, D.S., M. Gerchakov and L.R. Udey. 1979. Influence of substrate composition on marine microfouling. Appl. Environ. Microbiol. 38: 987.Google Scholar
  31. 31.
    McEldowney, S. and M. Fletcher. 1988. Bacterial desorption from food container and food processing surfaces. Microb. Ecol. 15: 229.Google Scholar
  32. 32.
    Mitchell, R. and D. Kirchman. 1981. The microbial ecology of marine surfaces. In: Marine Biodeterioration (Costlow, J.D. and R.C. Tipper, eds.), pp. 49–56, Naval Institute Press, Annapolis, MD.Google Scholar
  33. 33.
    Mittleman, M.W. and G. Geesey. 1987. Fouling of industrial water systems: A problem solving approach, pp. 138–193. Water Micro Associates, San Diego, CA.Google Scholar
  34. 34.
    Moreton, B.B. and T.G. Glover. 1980. New marine industry applications for corrosion and biofouling resistant, coppernickel alloys. In: Proc. 5th Int. Congr. Marine Corrosion and Fouling, p. 267. Biologia Marina, Barcelona, Spain.Google Scholar
  35. 35.
    Nickol, G.F. 1979. Vinegar. In: Microbial Tech. (Poppler, H.J. and D. Perlman, eds.), Chapter 6, Academic Press, New York, NY.Google Scholar
  36. 36.
    Nilsson, I. and S. Ohlson. 1982. Columnar denitrification of water by immobilizedPseudomonas denitrificans cells. Europ. J. Appl. Microbiol. Biotechnol. 14: 86.Google Scholar
  37. 37.
    Nilsson, I., S. Ohlson, L. Haggstrom, N. Molin, and K. Mosbach. 1980. Denitrification of water using immobilizedPseudomonas denitrificans cells. Europ. J. Appl. Microbiol. Biotechnol. 10: 261.Google Scholar
  38. 38.
    North, N.A. and I.D. MacLeod. 1987. Corrosion of metals. In: Conservation of Archeological Objects (Pearson, C., ed.), pp. 68–98, Butterworths, London.Google Scholar
  39. 39.
    Pfennig, N., F. Widdel, and H.G. Truper. 1981. The dissimulatory sulfate-reducing bacteria. In: The Prokaryotes: A Handbook on Habitats (Starr, M.P., Stolp, M., Trüper, H.G., Balows, A. and Schlegel, H.G., eds.), pp. 926–940, Springer-Verlag, New York, NY.Google Scholar
  40. 40.
    Postgate, J.R. 1979. Cultivation and growth. The Sulfate-Reducing Bacteria (Postgate, J.R., ed.), pp. 24–40, Cambridge University Press, London.Google Scholar
  41. 41.
    Ribbe, P.H. (ed.). 1976. Sulfide Mineralogy. Mineralogical Society of America, Washington, D.C.Google Scholar
  42. 42.
    Rowlands, J.C. 1965. Corrosion of tube and pipe alloys due to polluted seawater. J. Appl. Chem. 15: 57–63.Google Scholar
  43. 43.
    Sieburth, J.M. 1975. A Pictorial Essay on Marine Microorganisms and Their Environments. University Press, Baltimore, MD.Google Scholar
  44. 44.
    Staffeldt, E.E. and D.A. Kohler. 1973. Assessment of corrosion products removed from “La Fortuna”, Punta del Mar., Venezia. Petrolia e Ambiente, pp. 163–170.Google Scholar
  45. 45.
    Syrett, B.C. 1980. The mechanism of accelerated corrosion of copper-nickel alloys in sulfide polluted seawater. Corrosion/80, paper no. 33, NACE, Houston.Google Scholar

Copyright information

© Society for Industrial Microbiology 1991

Authors and Affiliations

  • Brenda Little
    • 1
  • Patricia Wagner
    • 1
  • Richard Ray
    • 1
  • Robert Pope
    • 2
  • Raymond Scheetz
    • 2
  1. 1.Naval Oceanographic and Atmospheric Research LaboratoryStennis Space CenterUSA
  2. 2.Department of Biological SciencesUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations