Advertisement

Current Microbiology

, Volume 28, Issue 1, pp 25–29 | Cite as

Phylogenetic affiliations ofRhodoferax fermentans and related species of phototrophic bacteria as determined by automated 16S rDNA sequencing

  • Akira Hiraishi
Article

Abstract

16S rDNA sequences of strains ofRhodoferax fermentans were analyzed and compared with those of species of the generaRubrivivax andRhodocyclus. Approximately 1.5-kb fragments of 16S rDNA from crude cell lysates were amplified by the polymerase chain reaction (PCR) and sequenced directly by usingTth DNA polymerase with the linear PCR sequencing protocol, followed by on-line detection with an automated laser fluorescent DNA sequencer. Pairwise sequence comparisons and distance matrix tree analysis showed thatRhodoferax fermentans, Rubrivivax gelatinosus, andRhodocyclus species belong to three separate lineages within the beta subclass of theProteobacteria, thereby confirming the phylogenetic validity of the genusRhodoferax, as well as of the generaRubrivivax andRhodocyclus.

Keywords

Phototrophic Bacterium Phylogenetic Affiliation Pairwise Sequence Comparison Polymerase Chain Reaction Sequencing Matrix Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene fromEscherichia coli. Proc Natl Acad Sci USA 75:4801–4805Google Scholar
  2. 2.
    Embley TM (1991) The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 13:171–174Google Scholar
  3. 3.
    Higgins DG, Beasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comp Appl Biosci 8:189–191Google Scholar
  4. 4.
    Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213Google Scholar
  5. 5.
    Hiraishi A, Hoshino Y, Kitamura H (1984) Isoprenoid quinone composition in the classification ofRhodospirillaceae. J Gen Appl Microbiol 30:197–210Google Scholar
  6. 6.
    Hiraishi A, Hoshino Y, Satoh T (1991)Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155:330–336Google Scholar
  7. 7.
    Imhoff J, Trüper HG (1989) GenusRhodocyclus Pfennig 1978 258AL. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 3. Baltimore: The Williams & Wilkins Co, pp 1678–1682Google Scholar
  8. 8.
    Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangements of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343Google Scholar
  9. 9.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120Google Scholar
  10. 10.
    Murray V (1989) Improved double stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res 17:8889Google Scholar
  11. 11.
    Satiou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  12. 12.
    Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. New York: Plenum Press, pp 729–750Google Scholar
  13. 13.
    Stackebrandt E (1991) Unifying phylogeny and phenotypic diversity. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 1, 2nd ed. Berlin: Springer-Verlag, pp 19–47Google Scholar
  14. 14.
    Tayeh MA, Madigan MT (1992) Comparative immunological analyses of the citric acid cycle enzyme malate dehydrogenase from phototrophic purple bacteria. Syst Appl Microbiol 15:331–335Google Scholar
  15. 15.
    Trüper HG, Imhoff JF (1992) The generaRhodocyclus andRubrivivax. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 2, 2nd ed. Berlin: Springer-Verlag, pp 2556–2561Google Scholar
  16. 16.
    Weckesser J, Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related nonphototrophic bacteria. FEMS Microbiol Rev 54:143–154Google Scholar
  17. 17.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar
  18. 18.
    Willems A, De Ley J, Gillis M, Kersters K (1991a)Comamonadaceae, a new family encompassing the acidovorans rRNA complex, includingVariovorax paradoxus gen. nov., comb. nov., forAlcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450Google Scholar
  19. 19.
    Willems A, Gillis M, De Ley J (1991b) Transfer ofRhodocyclus gelatinosus toRubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationship withLeptothrix, Sphaerotilus natans, Pseudomonas saccharophila, andAlcaligenes latus. Int J Syst Bacteriol 41:65–73Google Scholar
  20. 20.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  21. 21.
    Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H, Stackebrandt E (1984) The phylogeny of purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • Akira Hiraishi
    • 1
  1. 1.Laboratory of Environmental BiotechnologyKonishi Co.TokyoJapan

Personalised recommendations