Current Microbiology

, Volume 18, Issue 5, pp 303–306 | Cite as

Catabolite repression of the synthesis of inducible polygalacturonase and pectinesterase byAspergillus niger sp.

  • María Cristina Maldonado
  • Ana María Strasser de Saad
  • Danley Callieri


The synthesis of pectinesterase (PE) and polygalacturonase (PG) by a strain ofAspergillus niger isolated from rotten lemons was repressed by glucose, even in the presence of the inducer. The production of both enzymes started again once the sugar was used up, or when the mycelium was washed free of glucose and incubated in a glucose-free medium containing the inducer; this proved the reversibility of the repression mechanism. The effect of glucose was also tested in the absence of transcription. The results obtained suggest that repression occurs at the translational level.


Glucose Enzyme Sugar Catabolite Repression Translational Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Brock T (1978) Crecimiento, síntesis macromolecular y differenciación. In: Biología de los microorganismos. 2nd edn. Omega (eds) Casanova, 220, Barcelona, 36, pp 241–242Google Scholar
  2. 2.
    Cabello VA, Ruiz S, Orihuela AMI (1982) Producción de pectinasas bacterianas utilizando pulpa de café como sustrato. Rev Lat Amer de Microbiol 24:172–179Google Scholar
  3. 3.
    Egilsson V, Gudnason V, Jonasdottir A, Ingvarsson S, Andresdottir V (1986) Catabolite repressive effects of 5-thiod glucose onSaccharomyces cerevisiae. J Gen Microbiol 132:3309–3313Google Scholar
  4. 4.
    Hardesty B, Obrig T, Irvin J, Culp W (1973) The effect of sodium fluoride, adenine and cycloheximide on peptide synthesis with reticulocyte ribosomes. In: Kenney FT, Hankalo BA (eds) Gene expression and its regulation, vol 1. New York: Plenum Press, p 377Google Scholar
  5. 5.
    Hsu E, Vaughn R (1969) Production and catabolite repression of the constitutive polygalacturonic acid transeliminase ofAeromonas liquefaciens. J Bacteriol 98:172–181Google Scholar
  6. 6.
    Judewicz N, Kornblihtt AR (1983) Transferencia de la información genética y sus mecanismos de control. In: El Ateneo (ed) Bioquímica general de Torres, Carminatti, Cardini, pp 843–844Google Scholar
  7. 7.
    Kertesz ZI (1955) Pectic enzymes. In: Colowick, Kaplan (eds) Methods in enzymology, vol 1. New York: Academic Press, pp 159–162Google Scholar
  8. 8.
    Kilian S, Prior B, Latigan P (1983) Diauxic utilization of glucose-cellobiose mixtures byCandida wickeramii. Eur J Appl Microbiol Biotechnol 18:369–373Google Scholar
  9. 9.
    Maldonado MC, Navarro AR, Callieri DA (1986) Production of pectinases byAspergillus sp. using differently pretreated lemon peel as the carbon source. Biotechnol Lett 8(7):501–504Google Scholar
  10. 10.
    Maldonado MC, Strasser de Saad AM, Callieri DA (1988) Some regulatory aspects of the synthesis of polygalacturonase and pectinesterase byAspergillus niger sp. Sciences des Aliments, in pressGoogle Scholar
  11. 11.
    Miller GL (1959) Use of dinitrosalicylic acid acid reagent for determination of reducing sugar. Anal Chem 31:426–428Google Scholar
  12. 12.
    Shinmyo A, Mitsushima K, Terui G (1972) Kinetics studies on enzyme production by microbes. (IX) Some properties of autoinduction of acid protease inAspergillus niger. J Ferment Technol 50:647–654Google Scholar
  13. 13.
    Shinmyo A, Davis IK, Nomoto F, Tahara T, Enatsu T (1978) Catabolite repression of hydrolases inAspergillus niger. Eur J Appl Microbiol Biotechnol 5:59–68Google Scholar
  14. 14.
    Tahara T, Doi S, Shinmyo A, Teuir G (1972). Translational repression in the preferential synthesis of some mold enzymes (1). J Ferment Technol 50:655–661Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • María Cristina Maldonado
    • 1
  • Ana María Strasser de Saad
    • 1
  • Danley Callieri
    • 1
  1. 1.Department of Industrial Microbiology and General Microbiology, Faculty of Biochemistry, Chemistry, and PharmacyNational University of TucumánTucumánArgentina

Personalised recommendations