Journal of Industrial Microbiology

, Volume 7, Issue 1, pp 45–52 | Cite as

Structural analysis ofBacillus licheniformis 86 surfactant

  • Sarah Horowitz
  • W. Michael Griffin
Original Papers


A tentative structure and composition of a surfactant, BL-86, produced byBacillus licheniformis 86 is described. The surfactant is a mixture of lipopeptides with the major components ranging in size from 979 to 1091 Da and varying in increments of 14 Da. The variation in molecular weight represents changes in the number of methylene groups in the lipid and/or peptide portion of the surfactant. There are 7 amino acids per molecule. The peptide portion is composed of the following amino acids: glutamic acid or glutamine (glx), aspartic acid or asparagine (asx), valine, leucine, and isoleucine at a ratio of 1.0∶1.0∶1.4∶3.0∶0.6, respectively. The leucine is present as both thed andl isomers at a ratio of about 2∶1, respectively. Forty percent of the molecules containl-valine instead ofl-isoleucine. The glx and asx are present as a combination ofl-glutamic acid andl-asparagine and/orl-glutamine andl-aspartic acid. The N-terminus of the peptide is blocked, most likely by a peptide bond to the lipid portion. An ester carbonyl structure is present, which could be a part of a lactone ring connecting the β position of the lipid to one of the carboxyl groups in the peptide. The lipid portion is composed of, on average, 8–9 methylene groups, and contains a mixture of linear and branched tails. Results of DCI-MS and FAB-MS analyses, as well as surface tension measurements, of purified BL-86 HPLC fractions support the proposed composition.

Key words

Biosurfactant Lipopeptide BL-86 Surfactin Lichenysin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arima, K., A. Kakinuma, and G. Tamura. 1968. Surfactin, a crystalline peptidelipid surfactant produced byBacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488–494.Google Scholar
  2. 2.
    Arima, K., G. Tamura, and A. Kakinuma. 1972. Surfactin. United States Patent No. 3,687,926.Google Scholar
  3. 3.
    Bernheimer, A.W., and L.S. Avigad. 1970. Nature and properties of a cytological agent produced byBacillus subtilis. J. Gen. Microbiol. 61: 361–369.Google Scholar
  4. 4.
    Cooper, D.G., C.R. MacDonald, S.J.B. Duff, and N. Kosaric. 1981. Enhanced production of surfactin fromBacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol. 42: 408–412.Google Scholar
  5. 5.
    Horowitz, S., J.N. Gilbert, and W.M. Griffin. 1990. Isolation and characterization of a surfactant produced byBacillus licheniformis 86. J. Ind. Microbiol., In Press.Google Scholar
  6. 6.
    Hosono, K. and H. Suzuki. 1983. Acylpeptides, the inhibitors of cyclic adenosine 3′,5′-monophosphate phosphodiesterase I. Purification, physicochemical properties and structures of fatty acid residues. J. Antibiot. 36: 667–673.Google Scholar
  7. 7.
    Hosono, K. and H. Suzuki. 1983. Acylpeptides, the inhibitors of cyclic adenosine 3′,5′-monophosphate phosphodiesterase II. Amino acid sequence and location of lactone linkage. J. Antibiot. 36, 674–678.Google Scholar
  8. 8.
    Javaheri, M., G.E. Jenneman, M.J. McInerney, and R.M. Knapp. 1985. Anaerobic production of a biosurfactant byBacillus licheniformis JF-2. Appl. Environ. Microbiol. 50: 698–700.Google Scholar
  9. 9.
    Jenneman, G.E., M.J. McInerney, R.M. Knapp, J.B. Clark, J.M. Feero, D.E. Revus, and D.E. Menzie. 1983. A halotolerant, biosurfactant-producingBacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol. 24: 485–492.Google Scholar
  10. 10.
    Kakinuma, A., M. Hori, H. Sugino, I. Yoshida, M. Isono, G. Tamura, and K. Arima. 1969. Determination of the location of lactone ring in surfactin. Agr. Biol. Chem. 33: 1523–1524.Google Scholar
  11. 11.
    Kakinuma, A., M. Hori, M. Isono, G. Tamura, and K. Arima. 1969. Determination of amino acid sequence in surfactin, a crystalline peptide lipid surfactant produced byBacillus subtilis. Agr. Biol. Chem. 33: 971–972.Google Scholar
  12. 12.
    Kakinuma, A., H. Sugino, M. Isono, G. Tamura, and K. Arima. 1969. Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agr. Biol. Chem. 33: 973–976.Google Scholar
  13. 13.
    Kluge, B., J. Vater, J. Salnikow, and K. Echart. 1988. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic fromBacillus subtilis ATCC 21332. FEBS Lett. 231: 107–110.Google Scholar
  14. 14.
    Marfey, P. 1984. Determination of D-amino acids. II. Use of a reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 49: 591–596.Google Scholar
  15. 15.
    McInerney, M.J., G.E. Jenneman, R.M. Knapp, and D.E. Menzie. 1985. Biosurfactant and enhanced oil recovery. U.S. Patent No. 4,522,261.Google Scholar
  16. 16.
    Nakano, M.M., M.A. Marahiel, and P. Zuber. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin inBacillus subtilis. J. Bacteriol. 170: 5662–5668.Google Scholar
  17. 17.
    Stahl, E. 1969. Thin Layer Chromatography, p. 745. Springer-Verlag (2nd).Google Scholar
  18. 18.
    Thomas, D.W., and T. Ito. 1969. The revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron 25: 1985–1990.Google Scholar
  19. 19.
    Vater, J. 1986. Lipopeptides, an attractive class of microbial surfactants. Prog. Colloid Polymer Sci. 72: 12–18.Google Scholar

Copyright information

© Society for Industrial Microbiology 1991

Authors and Affiliations

  • Sarah Horowitz
    • 1
  • W. Michael Griffin
    • 2
  1. 1.BP ResearchResearch Center WarrensvilleClevelandUSA
  2. 2.Sybron Chemicals Inc.SalemUSA

Personalised recommendations