CP phases in the charged current and Higgs sectors for Majorana neutrinos

  • J. Bernabéu
  • A. Pich
  • A. Santamaría


The diagonalization of the leptonic mass matrices is performed in the framework of the triplet model to generate Majorana mass terms for neutrinos. This allows the understanding of the role played by the CP-violating phases in the Higgs sector and their relation with those of the charged-current Lagrangian. It is shown that all the leptonic mixings, including those of the Higgs couplings, can be given in terms of a Kobayashi-Maskawa matrix and the relative Majorana phases of the neutrino fields. The characteristic Majorana phases, always appearing together with the neutrino mass, are present in |ΔL|=2 pieces and they show up in processes with a) neutrino-antineutrino propagation, and/or b) at least two different neutrinos as asymptotic states, and/or c) a vertex with a doubly-charged scalar. The phenomenological implications for processes with these characteristics are given.


Neutrino Mass Mass Term Mass Matrice Higgs Sector Asymptotic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.P. Cheng, L.F. Li: Phys. Rev.D22, 2860 (1980)Google Scholar
  2. 2.
    H. Georgi, D.V. Nanopoulos: Nucl. Phys.B155, 52 (1979)Google Scholar
  3. 3.
    G.B. Gelmini, M. Roncadelli: Phys. Lett.99B, 411 (1981)Google Scholar
  4. 4.
    H.M. Georgi, S.L. Glashow, S. Nussinov: Nucl. Phys.B193, 297 (1981)Google Scholar
  5. 4a.
    S.L. Glashow, A. Manohar: Phys. Rev. Lett.54, 2306 (1985)Google Scholar
  6. 5.
    S.M. Bilenky, J. Hosek, S.T. Petcov: Phys. Lett.94B, 495 (1980)Google Scholar
  7. 6.
    J. Schechter, J.W.F. Valle: Phys. Rev.D22, 2227 (1980)Google Scholar
  8. 7.
    M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi: Phys. Lett.102B, 323 (1981)Google Scholar
  9. 8.
    M. Kobayashi, K. Maskawa: Prog. Theor. Phys.49, 652 (1973)Google Scholar
  10. 9.
    J. Bernabéu, P. Pascual: Nucl. Phys.B228, 21 (1983)Google Scholar
  11. 10.
    T.D. Lee: Phys. Rev.D8, 1226 (1973); Phys. Rep.9C, 143 (1974)Google Scholar
  12. 11.
    S. Weinberg: Phys. Rev. Lett.37, 657 (1976)Google Scholar
  13. 12.
    G.C. Branco: Phys. Rev. Lett.44, 504 (1980)Google Scholar
  14. 13.
    F. Buccella, G.B. Gelmini, A. Masiero, M. Roncadelli: Nucl. Phys.B231, 493 (1984)Google Scholar
  15. 14.
    A. Barroso, J. Maalampi: Phys. Lett.B132, 355 (1983)Google Scholar
  16. 15.
    L. Wolfenstein: Phys. Lett.107B, 77 (1981)Google Scholar
  17. 16.
    B. Kayser: National Science Foundation preprint, Washington (1984)Google Scholar
  18. 17.
    F. Boehm, P. Vogel: Ann. Rev. Nucl. Part Sci.34, 125 (1984)Google Scholar
  19. 18.
    A. Pich, A. Santamaría, J. Bernabéu: Phys. Lett.148B, 229 (1984)Google Scholar
  20. 19.
    V. Barger, H. Baer, W.Y. Keung, R.J.N. Phillips: Phys. Rev.D26, 218 (1982)Google Scholar
  21. 20.
    SINDRUM Collab. W. Bertl et al.: SIN preprint SIN-PR-85-06 (1985)Google Scholar
  22. 21.
    A. De Rújula, S.L. Glashow: Phys. Rev. Lett.45, 942 (1980); B. Pal, L. Wolfenstein: Phys. Rev.D25, 766 (1982)Google Scholar
  23. 22.
    M. Doi et al.: Prog. Theor. Phys.67, 281 (1982)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. Bernabéu
    • 1
  • A. Pich
    • 2
  • A. Santamaría
    • 3
  1. 1.CERNGeneva, 23Switzerland
  2. 2.Max-Planck-Institut für Physik und AstrophysikMünchenFederal Republic of Germany
  3. 3.Departament de Física TeòricaUniversitat de ValenciaValenciaSpain

Personalised recommendations