Journal of Industrial Microbiology

, Volume 17, Issue 5–6, pp 373–384 | Cite as

Bioactive compounds produced by cyanobacteria

  • M Namikoshi
  • KL Rinehart
Article

Abstract

Cyanobacteria produce a large number of compounds with varying bioactivities. Prominent among these are toxins: hepatotoxins such as microcystins and nodularins and neurotoxins such as anatoxins and saxitoxins. Cytotoxicity to tumor cells has been demonstrated for other cyanobacterial products, including 9-deazaadenosine, dolastatin 13 and analogs. A number of compounds in cyanobacteria are inhibitors of proteases — micropeptins, cyanopeptolins, oscillapeptin, microviridin, aeruginosins- and other enzymes, while still other compounds have no recognized biological activities. In general cyclic peptides and depsipeptides are the most common structural types, but a wide variety of other types are also found: linear peptides, guanidines, phosphonates, purines and macrolides. The close similarity or identity in structures between cyanobacterial products and compounds isolated from sponges, tunicates and other marine invertebrates suggests the latter compounds may be derived from dietary or symbiotic blue-green algae.

Keywords

cyanobacteria blue-green algae toxins enzyme inhibitors peptides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainslie RD, JJ Barchi Jr, M Kuniyoshi, RE Moore and JS Mynderse. 1985. Structure of malyngamide C. J Org Chem 50: 2859–2862.Google Scholar
  2. 2.
    Andersen RJ, HA Luu, DZX Chen, CFB Holmes, ML Kent, M Le Blanc, FJR Taylor and DE Williams. 1993. Chemical and biological evidence links microcystins to salmon ‘netpen liver disease’. Toxicon 31: 1315–1323.PubMedGoogle Scholar
  3. 3.
    Bates RB and S Gangwar. 1993. Asymmetric syntheses of 3-amino-2-methylpentanoic acids. Configurations of the β-amino acid in majusculamide C, 57-normajusculamide C and dolastatins 11 and 12. Tetrahedron: Asymmetry 4: 69–72.Google Scholar
  4. 4.
    Birk IM, R Dierstein, I Kaiser, U Matern, WA Konig, R Krebber and J Weckesser. 1989. Nontoxic and toxic oligopeptides withd-amino acids and unusual residues inMicrocystis aeruginosa PCC 7806. Arch Microbiol 151: 411–415.PubMedGoogle Scholar
  5. 5.
    Cannell RJP, SJ Kellam, AM Owsianka and JM Walker. 1988. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Med 54: 10–14.PubMedGoogle Scholar
  6. 6.
    Carmeli S, RE Moore and GML Patterson. 1990. Tolytoxin and new scytophycins from three species ofScytonema. J Nat Prod 53: 1533–1542.PubMedGoogle Scholar
  7. 7.
    Carmely S and Y Kashman. 1985. Structure of swinholide-A, a new macrolide from the marine spongeTheonella swinhoei. Tetrahedron Lett 26: 511–514.Google Scholar
  8. 8.
    Carmichael WW. 1992. Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bact 72: 445–459.PubMedGoogle Scholar
  9. 9.
    Carmichael WW. 1994. The toxins of cyanobacteria. Scientific American 270: 78–86.PubMedGoogle Scholar
  10. 10.
    Carmichael WW, VR Beasley, DL Bunner, JN Eloff, IR Falconer, PR Gorham, K-I Harada, T Krishnamurthy, M-J Yu, RE Moore, KL Rinehart, MTC Runnegar, OM Skulberg and MF Watanabe. 1988. Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon 26: 971–973.PubMedGoogle Scholar
  11. 11.
    Carmichael WW and IR Falconer. 1993. Diseases related to freshwater blue-green algal toxins, and control measures. In: Algal Toxins in Seafood and Drinking Water (Falconer IR, ed), pp 187–209, Academic Press, New York.Google Scholar
  12. 12.
    Carter DC, RE Moore, JS Mynderse, WP Niemczura and JS Todd. 1984. Structure of majusculamide C, a cyclic depsipeptide fromLyngbya majuscula. J Org Chem 49: 236–241.Google Scholar
  13. 13.
    Choi BW, M Namikoshi, F Sun, KL Rinehart, WW Carmichael, AM Kaup, WR Evans and VR Beasley. 1993. Isolation of linear peptides related to the hepatotoxins nodularin and microcystins. Tetrahedron Lett 34: 7881–7884.Google Scholar
  14. 14.
    De Silva ED, DE Williams, RJ Andersen, H Klix, CFB Holmes and TM Allen. 1992. Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea spongeTheonella swinhoei Gray. Tetrahedron Lett 33: 1561–1564.Google Scholar
  15. 15.
    Falconer IR. 1991. Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environ Toxic Water Qual 6: 177–184.Google Scholar
  16. 16.
    Fujii K, K-I Harada, M Suzuki, F Kondo, Y Ikai, H Oka and K Sivonen. 1995. Novel cyclic peptides together with microcystins produced by toxic cyanobacteria,Anabaena sp. 37th Symposium on The Chemistry of Natural Products (Tokushima), Symposium Papers, pp 445–450.Google Scholar
  17. 17.
    Gerwick WH, MA Roberts, PJ Proteau and J-L Chen. 1994. Screening cultured marine microalgae for anticancer-type activity. J Appl Phycol 6: 143–149.Google Scholar
  18. 18.
    Golakoti T, J Ogino, CE Heltzel, TL Husebo, CM Jensen, LK Larsen, GML Patterson, RE Moore, SL Mooberry, TH Corbett and FA Valeriote. 1995. Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs fromNostoc sp strain GSV 224. J Am Chem Soc 117: 12030–12049.Google Scholar
  19. 19.
    Gregson LM, J-L Chen, GML Patterson and RE Moore. 1992. Structures of puwainaphycins A-E. Tetrahedron Lett 48: 3727–3734.Google Scholar
  20. 20.
    Hambley TW, CJ Hawkins, MF Lavin, A van den Brenk and DJ Waters. 1992. Cycloxazoline: a cytotoxic cyclic hexapeptide from the ascidianLissoclinum bistratum. Tetrahedron 48: 341–348.Google Scholar
  21. 21.
    Harada K-I, K Ogawa, K Matsuura, H Murata, M Suzuki, MF Watanabe, Y Itezono and N Nakayama. 1990. Structural determination of geometrical isomers of microcystins LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem Res Toxicol 3: 473–481.PubMedGoogle Scholar
  22. 22.
    Harada K-I, K Ogawa, Y Kimura, H Murata, M Suzuki, PM Thorn, WR Evans and WW Carmichael. 1991. Microcystins fromAnabaena flos-aquae NRC 525-17. Chem Res Toxicol 4: 535–540.PubMedGoogle Scholar
  23. 23.
    Harada K-I, T Mayumi, T Shimada, M Suzuki, F Kondo and MF Watanabe. 1993. Occurrence of four depsipeptides, aeruginopeptins, together with microcystins from toxic cyanobacteria. Tetrahedron Lett 34: 6091–6094.Google Scholar
  24. 24.
    Harada K-I, I Ohtani, K Iwamoto, M Suzuki, MF Watanabe, M Watanabe and K Terao. 1994. Isolation of cylindrospermopsin from a cyanobacteriumUmezakia natans and its screening method. Toxicon 32: 73–84.PubMedGoogle Scholar
  25. 25.
    Harada K-I, K Fujii, T Shimada, M Suzuki, H Sano, K Adachi and WW Carmichael. 1995. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacteriumAnabaena flos-aquae NRC 525-17. Tetrahedron Lett 36: 1511–1514.Google Scholar
  26. 26.
    Honkanen RE, J Zwiller, RE Moore, SL Daily, BS Khatra, M Dukelow and AL Boynton. 1990. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem 265: 19410–19404.Google Scholar
  27. 27.
    Ishibashi M, RE Moore, GML Patterson, C Xu and J Clardy. 1986. Scytophycins, cytotoxic and antimycotic agents from the cyanophyteScytonema pseudohofmanni. J Org Chem 51: 5300–5306.Google Scholar
  28. 28.
    Ishida K, M Murakami, H Matusda and K Yamaguchi. 1995. Micropeptin 90, a plasmin and trypsin inhibitor from the blue-green algaMicrocystis aeruginosa (NIES-90). Tetrahedron Lett 36: 3535–3538.Google Scholar
  29. 29.
    Ishitsuka MO, T Kusumi, H Kakisawa, K Kaya and MM Watanabe. 1990. Microviridin: a novel tricyclic depsipeptide from the toxic cyanobacteriumMicrocystis viridis. J Am Chem Soc 112: 8180–8182.Google Scholar
  30. 30.
    Jakobi C, L Oberer, C Quiquerez, WA König and J Weckesser. 1995. Cyanopeptolin S, a sulfate-containing depsipeptide from a water bloom ofMicrocystis aeruginosa. FEMS Microbiol Lett 129: 129–134.PubMedGoogle Scholar
  31. 31.
    Jakobi C, KL Rinehart, R Neuber, K Mez and J Weckesser. 1996. Cyanopeptolin SS, a disulfated depsipeptide from a water bloom in Germany—structural elucidation and biological activities. Phycologia 35: (in press).Google Scholar
  32. 32.
    Kao CY. 1993. Paralytic shellfish poisoning In: Algal Toxins in Seafood and Drinking Water (Falconer IR, ed), pp 75–86, Academic Press, New York.Google Scholar
  33. 33.
    Kato Y and PJ Scheuer. 1975. The aplysiatoxins. Pure Appl Chem 41: 1–14.Google Scholar
  34. 34.
    Kernan MR and DJ Faulkner. 1987. Halichondramide, an antifungal macrolide from the spongeHalichondria sp. Tetrahedron Lett 28: 2809–2812.Google Scholar
  35. 35.
    Kiefel MJ, J Maddock and G Pattenden. 1992. Synthetic studies towards halichondramides, and related noveltris-oxazole containing macrolides from marine organisms. A concise route to the keto-triol formyl enamine moiety. Tetrahedron Lett 33: 3227–3230.Google Scholar
  36. 36.
    Kobayashi J, M Sato, T Murayama, M Ishibashi, MR Walchi, M Kanai, J Shoji and Y Ohizumi. 1991. Konbamide, a novel peptide with calmodulin antagonistic activity from the Okinawan marine spongeTheonella sp. J Chem Soc, Chem Commun 1050–1052.Google Scholar
  37. 37.
    Kobayashi J, M Sato, M Ishibashi, H Shigemori, T Nakamura and Y Ohizumi. 1991. Keramamide A, a novel peptide from the Okinawan marine spongeTheonella sp. J Chem Soc, Perkin Trans 1: 2609–2611.Google Scholar
  38. 38.
    Kobayashi M, J Tanaka, T Katori, M Matsuura, M Yamashita and I Kitagawa. 1990. Marine natural products. XXII. The absolute stereostructure of swinholide A, a potent cytotoxic dimeric macrolide from the Okinawan marine spongeTheonella swinhoei. Chem Pharm Bull 38: 2409–2418.Google Scholar
  39. 39.
    Kobayashi M, M Kurosu, N Ohyabu, W Wang, S Fujii and I Kitagawa. 1994. The absolute sterostructure of arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine spongeDysidea arenaria. Chem Pharm Bull 42: 2196–2198.Google Scholar
  40. 40.
    Lee AY, TA Smitka, R Bonjouklian and J Clardy. 1994. Atomic structure of the trypsin-A90720A complex: a unified approach to structure and function. Chem Biol 1: 113–117.PubMedGoogle Scholar
  41. 41.
    MacKintosh C, KA Beattie, S Klumpp, P Cohen and GA Codd. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264: 187–192.PubMedGoogle Scholar
  42. 42.
    Martin C, L Oberer, T Ino, WA Konig, M Busch and J Weckesser. 1993. Cyanopeptolins, new depsipeptides from the cyanobacteriumMicrocystis sp PCC 7806. J Antibiot 46: 1550–1556.PubMedGoogle Scholar
  43. 42.
    Mason CP, KR Edwards, RE Carlson, J Pignatello, FK Gleason and JM Wood. 1982. Isolation of chlorine-containing antibiotic from the freshwater cyanobacteriumScytonema hofmanni. Science 215: 400–402.PubMedGoogle Scholar
  44. 44.
    Matsuda H, T Okino, R Haraguchi, M Murakami and K Yamaguchi and K Yamaguchi. 1993. Structures of serine protease inhibitors from freshwater bluegreen algae. 35th Symposium on The Chemistry of Natural Products (Kyoto), Symposium Papers, pp 654–661.Google Scholar
  45. 45.
    Matsuda H, T Okino, Y Okita, K Ishida, M Murakami and K Yamaguchi. 1995. Thrombin inhibitors from the blue-green algaMicrocystis viridis (NIES-102). 37th Symposium on The Chemistry of Natural Products (Tokushima), Symposium Papers, pp 421–426.Google Scholar
  46. 46.
    Matsunaga S, N Fusetani, K Hashimoto, K Koseki and M Noma. 1986. Kabiramide C, a novel antifungal macrolide from nudibranch eggmasses. J Am Chem Soc 108: 847–849.Google Scholar
  47. 47.
    Moore BS, J-L Chen, GML Patterson, RE Moore, LS Brinen, Y Kato and J Clardy. 1990. [7.7]Paracyclophanes from blue-green algae. J Am Chem Soc 112: 4061–4063.Google Scholar
  48. 48.
    Moore RE, V Bornemann, WP Niemczura, JM Gregson, J-L Chen, TR Norton, GML Patterson and GL Herms. 1989. Puwainaphycin C, a cardioactive cyclic peptide from the blue-green algaAnabaena BQ-16-1. Use of two-dimensional13C−13C and13C−15N correlation spectroscopy in sequencing the amino acid units. J Am Chem Soc 111: 6128–6132.Google Scholar
  49. 49.
    Moore RE, AJ Blackman, CE Cheuk, JS Mynderse, GK Matsumoto, J Clardy, RW Woodard and JC Craig. 1984. Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49: 2484–2489.Google Scholar
  50. 50.
    Moore RE, C Cheuk and GML Patterson. 1984. Hapalindoles: new alkaloids from the blue-green algaHapalosiphon fontinalis. J Am Chem Soc 106: 6456–6457.Google Scholar
  51. 51.
    Murakami M, Y Okita, H Matsuda, T Okino and K Yamaguchi. 1994. Aeruginosin 298-A, a thrombin and trypsin inhibitor from the blue-green algaMicrocystis aeruginosa (NIES-298). Tetrahedron Lett 35: 3129–3132.Google Scholar
  52. 52.
    Murakami M, K Ishida, T Okino, Y Okita, H Matsuda and K Yamaguchi. 1994. Serine protease inhibitors from the blue-green algaMicrocystis aeruginosa (NIES-98). 36th Symposium on The Chemistry of Natural Products (Hiroshima), Symposium Papers, pp 493–500.Google Scholar
  53. 53.
    Murakami M, K Ishida, T Okino, Y Okita, H Matsuda and K Yamaguchi. 1995. Aeruginosins 98-A and B, trypsin inhibitors from the blue-green algaMicrocystis aeruginosa (NIES-98). Tetrahedron Lett 36: 2785–2788.Google Scholar
  54. 54.
    Namikoshi M, KL Rinehart, R Sakai, K Sivonen and WW Carmichael. 1990. Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga)Nostoc sp strain 152. J Org Chem 55: 6135–6139.Google Scholar
  55. 55.
    Namikoshi M, KL Rinehart, R Sakai, RR Stotts, AM Dahlem, VR Beasley, WW Carmichael and WR Evans. 1992. Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteriaMicrocystis aeruginosa, Microcystis viridis, andMicrocystis wesenbergii: nine new microcystins. J Org Chem 57: 866–872.Google Scholar
  56. 56.
    Namikoshi M, K Sivonen, WR Evans, WW Carmichael, L Rouhiainen, R Luukkainen and KL Rinehart. 1992. Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant fromAnabaena sp strain 66. Chem Res Toxicol 5: 661–666.PubMedGoogle Scholar
  57. 57.
    Namikoshi M, BW Choi, F Sun, KL Rinehart, WR Evans and WW Carmichael. 1993. Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Chem Res Toxicol 6: 151–158.PubMedGoogle Scholar
  58. 58.
    Namikoshi M, WW Carmichael, R Sakai, EA Jares-Erijman, AM Kaup and KL Rinehart. 1993. 9-Deazaadenosine and its 5′-α-d-glucopyranoside isolated from the cyanobacteriumAnabaena affinis strain VS-1. J Am Chem Soc 115: 2504–2505.Google Scholar
  59. 59.
    Namikoshi M, BW Choi, R Sakai, F Sun, KL Rinehart, WW Carmichael, WR Evans, P Cruz, MHG Munro and JW Blunt. 1994. New nodularins: a general method for structure assignment. J Org Chem 59: 2349–2357.Google Scholar
  60. 60.
    Namikoshi M, F Sun, BW Choi, KL Rinehart, WW Carmichael, WR Evans and VR Beasley. 1995. Seven more microcystins from Homer Lake cells: application of the general method for structure assignment of peptides containing α,β-dehydroamino acid unit(s). J Org Chem 60: 3671–3679.Google Scholar
  61. 61.
    Nishiwaki-Matsushima R, T Ohta, S Nishiwaki, M Suganuma, K Kohyama, T Ishikawa, WW Carmichael and H Fujiki. 1992. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118: 420–424.PubMedGoogle Scholar
  62. 62.
    Ohta T, E Sueoka, N Iida, A Komori, M Suganuma, R Nishiwaki, M Tatematus, S-J Kim, WW Carmichael and H Fujiki. 1994. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res 54: 6402–6406.PubMedGoogle Scholar
  63. 63.
    Ohtani I, RE Moore and MTC Runnegar. 1992. Cylindrospermopsin: a potent hepatotoxin from the blue-green algaeCylindrospermopsis raciborskii. J Am Chem Soc 114: 7941–7942.Google Scholar
  64. 64.
    Okino T, H Matsuda, M Murakami and K Yamaguchi. 1993. Microginin, an angiotensin-converting enzyme inhibitor from the blue-green algaMicrocystis aeruginosa. Tetrahedron Lett 34: 501–504.Google Scholar
  65. 65.
    Okino T, M Murakami, R Haraguchi, H Munekata, H Matsuda and K Yamaguchi. 1993. Micropeptins A and B, plasmin and trypsin inhibitors from the blue-green algaMicrocystis aeruginosa. Tetrahedron Lett 34: 8131–8134.Google Scholar
  66. 66.
    Okino T, H Matsuda, M Murakami and K Yamaguchi. 1995. New microviridins, elastase inhibitors from the blue-green algaMicrocystis aeruginosa. Tetrahedron 51: 10679–10686.Google Scholar
  67. 67.
    Park H-D, MF Watanabe, K-I Harada, H Nagai, M Suzuki, M Watanabe and H Hayashi. 1993. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Nat Tox 1: 353–360.Google Scholar
  68. 68.
    Patterson GML, LK Larsen and RE Moore. 1994. Bioactive natural products from blue-green algae. J Appl Phycol 6: 151–157.Google Scholar
  69. 69.
    Pettit GR, Y Kamano, H Kizu, C Dufresne, CL Herald, RJ Bontems, JM Schmidt, FE Boettner and RA Nieman. 1989. Isolation and structure of the cell growth inhibitory depsipeptides dolastatins 11 and 12. Heterocyles 28: 553–558.Google Scholar
  70. 70.
    Pettit GR, Y Kamano, CL Herald, C Dufresne, RL Cerny, DL Herald, JM Schmidt and H Kizu. 1989. Isolation and structure of the cytosatic desipeptide dolastatin 13 from the sea hareDolabella auricularia. J Am Chem Soc 111: 5015–5017.Google Scholar
  71. 71.
    Prinsep MR, RE Moore, IA Levine and GML Patterson. 1992. Westiellamide, a bistratamide-related cyclic peptide from the blue-green algaWestiellopsis prolifica. J Nat Prod 55: 140–142.PubMedGoogle Scholar
  72. 72.
    Rinehart KL, K-I Harada, M Namikoshi, C Chen, CA Harvis, MHG Munro, JW Blunt, PE Mulligan, VR Beasley, AM Dahlem and WW Carmichael. 1988. Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 110: 8557–8558.Google Scholar
  73. 73.
    Rinehart KL, TG Holt, NL Fregeau, PA Keifer, GR Wilson, TJ Perun Jr, R Sakai, AG Thompson, JG Stroh, LS Shield, DS Seigler, LH Li, DG Martin, CJP Grimmelikhuijzen and G Gade. 1990. Bioactive compounds from aquatic and terrestrial sources. J Nat Prod 53: 771–792.PubMedGoogle Scholar
  74. 74.
    Rinehart KL, M Namikoshi and BW Choi. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6: 159–176.Google Scholar
  75. 75.
    Rose AF, PJ Scheuer, JP Springer and J Clardy. 1978. Stylocheilamide, an unusual constituent of the sea hareStylocheilus longicauda. J Am Chem Soc 100: 7665–7670.Google Scholar
  76. 76.
    Sano T and K Kaya. 1995. Oscillamide Y, a chymotrypsin inhibitor from toxicOscillatoria agardhii. Tetrahedron Lett 36: 5933–3936.Google Scholar
  77. 77.
    Sano T and K Kaya. 1996. Oscillapeptin G, a tryrosinase inhibitor from toxicOscillatoria agardhii. J Nat Prod 59: 90–92.PubMedGoogle Scholar
  78. 78.
    Shin HJ, M Murakami, H Matsuda, K Ishida and K Yamaguchi. 1995. Oscillapeptin, an elastase and chymotrypsin inhibitor from the cyanobacteriumOscillatoria agardhii (NIES-204). Tetrahedron Lett 36: 5235–5238.Google Scholar
  79. 79.
    Sivonen K, M Namikoshi, WR Evans, WW Carmichael, F Sun, L Rouhiainen, R Luukkainen and KL Rinehart. 1992. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genusAnabaena. Appl Environ Microbiol 58: 2495–2500.PubMedGoogle Scholar
  80. 80.
    Skulberg OM, WW Carmichael, GA Codd and R Skulberg. 1993. Taxonomy of toxic Cyanophyceae (cyanobacteria). In: Algal Toxins in seafood and Drinking Water (Falconer IR, ed), pp 145–164, Academic Press, New York.Google Scholar
  81. 81.
    Steidinger KA. 1993. Some taxonomic and biologic aspects of toxic dinoflagellates. In: Algal Toxins in Seafood and Drinking Water (Falconer IR, ed), pp 1–28, Academic Press, New York.Google Scholar
  82. 82.
    Stotts RR, M Namikoshi, WM Haschek, KL Rinehart, WW Carmichael, AM Dahlem and VR Beasley. 1993. Structural modifications imparting reduced toxicity in microcystins fromMicrocystis spp. Toxicon 31: 783–789.PubMedGoogle Scholar
  83. 83.
    Trimurtulu G, I Ohtani, GML Patterson, RE Moore, TH Corbett, FA Valeriote and L Demchik. 1994. Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green algaNostoc sp strain GSV 224. J Am Chem Soc 116: 4729–4737.Google Scholar
  84. 84.
    Tsukamoto S, P Painuly, KA Young, X Yang, Y Shimizu and L Cornell. 1993. Microcystilide A: a novel cell-differentiation-promoting depsipeptide fromMicrocystis aeruginosa NO-15-1840. J Am Chem Soc 115: 11046–11047.Google Scholar
  85. 85.
    Williams DE, DL Burgoyne, SJ Rettig, RJ Andersen, ZR Fathi-Afshar and TM Allen. 1993. The isolation of majusculamide C from the spongePtilocaulis trachys collected in Enewetak and determination of the absolute configuration of the 2-methyl-3-aminopentanoic acid residue. J Nat Prod 56: 545–551.Google Scholar
  86. 86.
    Yoshizawa S, R Matsushima, MF Watanabe, K-I Harada, A Ichihara, WW Carmichael and H Fujiki. 1990. Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol 116: 609–614.PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • M Namikoshi
    • 1
  • KL Rinehart
    • 1
  1. 1.Roger Adams LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations