Journal of Industrial Microbiology

, Volume 17, Issue 3–4, pp 303–313 | Cite as

Quest for wine yeasts—An old story revisited

  • T Török
  • RK Mortimer
  • P Romano
  • G Suzzi
  • M Polsinelli


Numerous studies have described the yeast biota of grapes, and grape must in order to understand better the succession of yeasts during fermentation of wine. The origin of the wine yeasts has been rather controversial. By using more elaborate isolation methods, classical genetic analysis and electrophoretic karyotyping of monosporic clones, with this study, credible proof now exists that the vineyard is the primary source for the wine yeasts and that strains found on the grapes can be followed through the fermentation process.


grape(s) wine yeast(s) Saccharomyces cerevisiae genetic analysis electrophoretic karyotyping segregation of chromosomal length polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amerine MA and RE Kunkee. 1968. Microbiology of wine making. Ann Rev Microbiol 22: 323–358.Google Scholar
  2. 2.
    Barnett JA, MA Delaney, A Jones, B Magson and B Winch. 1972. The number of yeasts associated with wine grapes of Bordeaux. Arch Microbiol 83: 52–55.Google Scholar
  3. 3.
    Belin J-M. 1972. Recherches sur la répartition des levures à la surface de la grappe de raisin. Vitis 11: 135–145.Google Scholar
  4. 4.
    Cardinali G and A Martini. 1994. Electrophoretic karyotypes of authentic strains of the sensu stricto group of the genusSaccharomyces. Int J Syst Bacteriol 44: 791–797.PubMedGoogle Scholar
  5. 5.
    Fleet GH, 1990. Growth of yeasts during wine fermentation. J Wine Res 1: 211–223.Google Scholar
  6. 6.
    Fleet GH, S Lafon-Lafourcade and P Ribéreau-Gayon. 1984. Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl Environ Microbiol 48: 1034–1038.Google Scholar
  7. 7.
    Frezier V and D Dubourdieu. 1992. Ecology of yeast strainsSaccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery. Am J Enol Vitic 43: 375–380.Google Scholar
  8. 8.
    Gimeno CJ and GR Fink. 1992. The logic of cell division in the life cycle of yeast. Science 257: 626.PubMedGoogle Scholar
  9. 9.
    Heard GM and GH Fleet. 1985 Growth of natural yeast flora during the fermentation of inoculate wines. Appl Environ Microbiol 50: 727–728.Google Scholar
  10. 10.
    Herraiz T, G Reglero, M Herraiz and PJ Martinalvarez. 1990. The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am J Enol Vitic 41: 313–318.Google Scholar
  11. 11.
    Kish S, R Sharf and P Margalith. 1983. A note on selective medium for wine yeasts. J Appl Bacteriol 55: 177–179.Google Scholar
  12. 12.
    Lachance MA. 1995. Yeast communities in a natural tequila fermentation. Antonie van Leeuwenhoek 68: 151–160.PubMedGoogle Scholar
  13. 13.
    Lachance M, DG Gilbert and WT Starmer. 1994. Yeast communities associated withDrosophila species and related flies in eastern oakpine forest: a comparison with western communities. J Ind Microbiol 14: 484–494.Google Scholar
  14. 14.
    Lafon-Lafourcade S. 1993. Wine and brandy. In: Biotechnology, Vol 5 (Rehm HJ and G Reed, eds), pp 81–163, Verlag Chemie, Weinheim.Google Scholar
  15. 15.
    Martini A. 1993. Origin and domestication of the wine yeastSaccharomyces cerevisiae. J Wine Res 4: 165–176.Google Scholar
  16. 16.
    Miller MW, HJ Phaff and HE Snyder. 1962. On the occurrence of various species of yeasts in nature. Mycopath Mycol Appl 16: 1–18.Google Scholar
  17. 17.
    Mortimer RK and CR Contopoulou. 1991. Yeast Genetic Stock Center Catalogue, 7th edn, p 2 University of Califonia, Berkeley.Google Scholar
  18. 18.
    Mortimer RK, JC Game, M Bell and CR Contopoulou. 1990. Use of pulsed-field gel electrophoresis to study the chromosomes ofSacchamoryces and other yeasts. Methods: A Companion to Methods in Enzymology 1: 169–179.Google Scholar
  19. 19.
    Mortimer RK, P Romano, G Suzzi and M Polsinelli. 1994. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains ofSaccharomyces cerevisiae derived from natural fermentation of grape must. Yeast 10: 1543–1552.PubMedGoogle Scholar
  20. 20.
    Naumov GI. 1986. Genetic differentiation and ecology of the yeastSaccharomyces paradoxus Batschinskaia. Doklady Akademii Nauk SSSR 291: 754–757.Google Scholar
  21. 21.
    Naumov G, ES Naumova, C Gaillardin, H Turakainen and M Korhola. 1994. Identification of new chromosomes ofSaccharomyces bayanus using gene probes fromSacch, cerevisiae. Hereditas 120: 121–126.PubMedGoogle Scholar
  22. 22.
    Naumov G, ES Naumova, RA Lantto EJ Louis and M Korhola. 1992. Genetic homology betweenSaccharomyces cerevisiae and its sibling speciesSacch. paradoxus andSacch, bayanus: electrophoretic karyotypes. Yeast 8: 599–612.PubMedGoogle Scholar
  23. 23.
    Pasteur L. 1866. Études sur le Vin, ses Maladies, Causes qui les Provoquent. Imprimerie Impérial, Paris.Google Scholar
  24. 24.
    Pasteur L. 1872. Nouvelles expériences pour démontrer que le germe de la levure qui fait le vin provient de l'extérieur des grains de raisin. Comptes Rendus de l'Académie des Science de Paris 75: 781–793.Google Scholar
  25. 25.
    Pearson BM and RA McKee. 1992. Rapid identification ofSaccharomyces cerevisiae, Zygosaccharomyces bailii andZygosaccharomyces rouxii. Int J Food Microbiol 16: 63–67.PubMedGoogle Scholar
  26. 26.
    Phaff HJ and EP Knapp. 1956. The taxonomy of yeasts found in exudates of certain trees and other natural breeding sites of some species ofDrosophila. Antonie van Leeuwenhoek 22: 117–130.PubMedGoogle Scholar
  27. 27.
    Phaff HJ, MW Miller and EM Mrak. 1978. The Life of Yeasts. Harvard University Press, Cambridge.Google Scholar
  28. 28.
    Phaff HJ, MW Miller and M Shifrine. 1956 The taxonomy of yeasts isolated fromDrosophila in the Yosemite region of California. Antonie van Leeuwenhoek 22: 145–161.PubMedGoogle Scholar
  29. 29.
    Phaff HJ, MW Miller, JA Recca, M Shifrine and EM Mrak. 1956. Studies on the ecology ofDrosophila in the Yosemite region of California. II. Yeasts found in the alimentary canal ofDrosophila. Ecology 37: 533–538.Google Scholar
  30. 30.
    Phaff HJ, MW Miller, M Yoneyama and M Soneda. 1972. A comparative study of the yeast florae associated with trees on the Japanese islands and on the west coast of North America. Proc IV IFS: Ferment Technol Today 759–774.Google Scholar
  31. 31.
    Romano P, G Suzzi, RK Mortimer and M Polsinelli. 1995. Production of high levels of acetoin inSaccharomyces cerevisiae wine yeasts is a recessive trait. J Appl Bacteriol 78: 169–174.PubMedGoogle Scholar
  32. 32.
    Rosini G, F Federici and A Martini. 1982. Yeast flora of grape berries during ripening. Microbiol Ecol 8: 83–89.Google Scholar
  33. 33.
    Smith CL, S Klco, T-Y Zhang, H Fang, R Oliva, D Wang, M Bremer and S Lawrance. 1993. Analysis of megabase DNA using pulsed-field gel electrophoresis techniques. In: Gene and Chromosome Analysis, Part B, Methods in Molecular Genetics Vol 2 (Adolph KW ed), pp 155–194, Academic Press, San Diego.Google Scholar
  34. 34.
    Sponholz WR and HH Dittrich. 1974. Die Bildung von SO2-bindenden Gärungs-Nebenprodukten, höheren Alkoholen und Estern bei einigen Reinzuchthefestämmen und bei einigen für die Weinbereitung wichtigen ‘wilden’ Hefen. Wein-Wissenschaft 29: 301–314.Google Scholar
  35. 35.
    Stevic B. 1962 The significance of bees (Apis sp) and wasps (Vespa sp) as carriers of yeasts for the microflora of grapes and the quality of wine. Arhiv za Poljoprivredne Nauke 15: 80–92.Google Scholar
  36. 36.
    Török T, C Royer, D Rockhold and AD King Jr. 1992. Electrophoretic karyotyping of yeasts and DNA-DNA hybridization probing using individual whole chromosomes for probe preparation. J Gen Appl Microbiol 38: 313–325.Google Scholar
  37. 37.
    Vaughan-Martini A. 1989.Saccharomyces paradoxus comb nov a newly separated species of theSaccharomyces sensu stricto complex based upon nDN/nDNA homologies. System Appl Microbiol 12: 179–182.Google Scholar
  38. 38.
    Vaughan-Martini A and A Martini. 1993. A taxonomic key for the genusSaccharomyces. System Appl Microbiol 16: 113–119.Google Scholar
  39. 39.
    Vaughan-Martini A and A Martini. 1995. Facts, myths and legends on the prime industrial microorganism. J Ind Microbiol 14: 514–522.PubMedGoogle Scholar
  40. 40.
    Vaughan-Martini A, A Martini and G Cardinali. 1993. Electrophoretic karyotyping as a taxonomic tool in the genusSaccharomyces. Antonie van Leeuwenhoek 63: 145–163.PubMedGoogle Scholar
  41. 41.
    Versavaud A, P Courcoux, C Roulland, L Dulau and JN Hallet. 1995. Genetic diversity and geographical distribution of wildSaccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl Environ Microbiol 61: 3521–3529.PubMedGoogle Scholar
  42. 42.
    Vezinhet F, J-N Hallet, M Valade and A Poulard. 1992. Ecological survey of wine yeast strains by molecular methods of identification. Am J Enol Vitic 43: 83–86.Google Scholar
  43. 43.
    Wucherpfennig K and G Bretthauer. 1970. Über die Bildung von flüchtigen Aromastoffen in Traubensaft in Abhängigkeit von der Mostbehandlung sowie von der verwendeten Heferasse. Mitteilungen Klosterneuburg 20: 36–46.Google Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • T Török
    • 1
  • RK Mortimer
    • 2
  • P Romano
    • 3
  • G Suzzi
    • 3
  • M Polsinelli
    • 4
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.University of CaliforniaBerkeleyUSA
  3. 3.University of PotenzaItaly
  4. 4.University of FlorenceItaly

Personalised recommendations