Journal of Industrial Microbiology

, Volume 4, Issue 3, pp 181–187 | Cite as

The mechanism of stabilization of actinomycete foams and the prevention of foaming under laboratory conditions

  • Linda L. Blackall
  • Kevin C. Marshall
Original Papers


Cultures ofNocardia amarae give rise to cell-stabilized foams in a laboratory scale foaming apparatus. The organism produces a surfactant and the cells are very hydrophobic; factors which, in terms of froth flotation theory, are essential for foam production and transport of the cells from the aqueous to the bubble phase. The addition of montmorillonitic clay to the culture prior to foaming prevents foam stabilization. The results obtained suggest the formation of a salt-dependent, reversible, bacterium-montmorillonite complex which prevents transport of cells to the bubble phase.

Key words

Nocardia amarae Surface tension Hydrocarbon affinity Montmorillonite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akit, J., D.G. Cooper, K.I. Manninen and J.E. Zajic. 1981. Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Curr. Microbiol. 6: 145–150.Google Scholar
  2. 2.
    Andrews, G.F., J.P. Fonta, E. Marrotta and P. Stroeve. 1984. The effects of cells on oxygen transfer coefficients. I: Cell accumulation around bubbles. Chem. Eng. J. 29: B39-B46.Google Scholar
  3. 3.
    Anon. 1969. Milwaukee mystery: unusual operating problem develops. Water Sewage Works 116: 213.Google Scholar
  4. 4.
    Blanchard, D.C. and B.C. Parker. 1977. The freshwater to air transfer of microorganisms and organic matter. In: Aquatic Microbial Communities (Sirenz, J., ed.), pp. 625–658, Garland Publishing Inc., New York.Google Scholar
  5. 5.
    Boyles, W.A. and R.E. Lincoln. 1958. Separation and concentration of bacterial spores and vegetative cells by foam flotation. Appl. Microbiol. 6: 327–334.PubMedGoogle Scholar
  6. 6.
    Cairns, W.L., D.G. Cooper, J.E. Zajic, J.M. Wood and N. Kosaric. 1982. Characterization ofNocardia amarae as a potent biological coalescing agent of water-oil emulsions. Appl. Environ. Microbiol. 43: 362–366.Google Scholar
  7. 7.
    Cooper, D.G., J.E. Zajic and D.F. Gerson. 1979. Production of surface active lipids byCorynebacterium lepus. Appl. Environ. Microbiol. 37: 4–10.PubMedGoogle Scholar
  8. 8.
    Gaudin, A.M., A.L. Mular and R.F. O'Connor. 1960. Separation of microorganisms by flotation. I. Development and evaluation of assay procedures. Appl. Microbiol. 8: 80–84.PubMedGoogle Scholar
  9. 9.
    Gaudin, A.M., A.L. Mular and R.F. O'Connor. 1960. Separation of microorganisms by flotation. II. Flotation of spores ofBacillus subtilis var.niger. Appl. Microbiol. 8: 91–97.Google Scholar
  10. 10.
    Gerson, D.F. and J.E. Jajic. 1979. Microbial biosurfactants. Process Biochem. July: 20–29.Google Scholar
  11. 11.
    Goddard, A.J. and C.F. Forster. 1986. Surface tension of activated sludge in relation to the formation of stable foams. Microbios 46: 29–43.Google Scholar
  12. 12.
    Greenfield, P.F., A.E. Pettigrew, L.L. Blackall and A.C. Hayward. 1984. Actinomycete scum problems in activated sludge plants. Report submitted to Queensland Dept. of Local Government, Brisbane. Dept. of Chemical Engineering, University of Queensland, Report No. 10.Google Scholar
  13. 13.
    Grieves, R.B. 1972. Flotation of particulates: ferric oxide, bacteria, active carbon, and clays. In: Adsorptive Bubble Separation Techniques (Lemlich, R., ed.), pp. 191–197, Academic Press, New York.Google Scholar
  14. 14.
    Grim, R.E. 1968. Clay Mineralogy. McGraw-Hill Book Co., New York.Google Scholar
  15. 15.
    Hiraoka, A. and K. Tsumura. 1984. Suppression of actionmycete scum production — a case study at Senboku wastewater treatment plant. Jpn. Water Sci. Technol. 16: 83–90.Google Scholar
  16. 16.
    Kretschmer, A., H. Bock and F. Wagner. 1982. Chemical and physical characterization of interfacial-active lipids fromRhodococcus erythropolis grown onn-alkanes. Appl. Environ. Microbiol. 44: 864–870.Google Scholar
  17. 17.
    Lahav, N. 1962. Adsorption of sodium bentonite particles onBacillus subtilis. Plant Soil 17: 191–208.Google Scholar
  18. 18.
    Lechevalier, H.A. 1975. Actinomycetes of sewage treatment plants. U.S. Dept. of Commerce NTIS Report No. PB 245 914.Google Scholar
  19. 19.
    Lechevalier, M.P. and H.A. Lechevalier. 1974.Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int. J. Syst. Bacteriol. 24: 278–288.Google Scholar
  20. 20.
    Leja, A. 1982. Surface Chemistry of Froth Flotation. Plenum Press, New York.Google Scholar
  21. 21.
    Lemlich, R. (ed.) 1972. Adsorptive Bubble Separation Techniques. Academic Press, New York.Google Scholar
  22. 22.
    Lemmer, H. and R.M. Kroppenstedt. 1984. Chemotaxonomy and physiology of some actinomycets isolated from scumming activated sludge. Syst. Appl. Microbiol. 5: 124–135.Google Scholar
  23. 23.
    MacDonald, C.R., D.G. Cooper and J.E. Zajic. 1981. Surface-active lipids fromNocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 41: 117–123.Google Scholar
  24. 24.
    Margaritis, A., K. Kennedy, J.E. Zajic and D.F. Gerson. 1979. Biosurfactant production byNocardia erythropolis. Dev. Ind. Microbiol. 20: 623–630.Google Scholar
  25. 25.
    Marshall, K.C. 1968. Interaction between colloidal montmorillonite and cells ofRhizobium species with different ionogenic surfaces. Biochim. Biophys. Acta 156: 179–186.PubMedGoogle Scholar
  26. 26.
    Maynard, N.G. 1968. Aquatic foams as an ecological habitat. Z. Allg. Mikrobiol. 8: 119–126.PubMedGoogle Scholar
  27. 27.
    Mulligan, C.N., D.G. Cooper and R.J. Neufeld. 1984. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. 62: 311–314.Google Scholar
  28. 28.
    Ristau, E. and F. Wagner. 1983. Formation of novel anionic trehalosetetraesters fromRhodococcus erythropolis under growth limiting conditions. Biotechnol. Lett. 5: 95–100.Google Scholar
  29. 29.
    Rosenberg, M., D. Gutnick and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.Google Scholar
  30. 30.
    Rubin, A.J. 1968. Microflotation: coagulation and foam separation ofAerobacter aerogenes. Biotechnol. Bioeng. 10: 89–98.Google Scholar
  31. 31.
    Rubin, A.J., E.A. Cassel, O. Henderson, J.D. Johnson and J.C. Lamb. 1966. Microflotation: new low gas-flow rate foam separation technique for bacteria and algae. Biotechnol. Bioeng. 8: 135–151.Google Scholar
  32. 32.
    Shaw, D.J. 1980. Introduction to Colloid and Surface Chemistry. Butterworths, London.Google Scholar
  33. 33.
    Stanier, R.Y., N.J. Palleroni and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–277.PubMedGoogle Scholar
  34. 34.
    Stewart, A.L., N.C.C. Gray, W.L. Cairns and N. Kosaric. 1983. Bacteria-induced deemulsification of water-in-oil petroleum emulsions. Biotechnol. Lett. 5: 725–730.Google Scholar
  35. 35.
    Stotzky, G. 1985. Mechanisms of adhesion to clays, with reference to soil systems. In: Bacterial Adhesion (Savage, D.W. and M. Fletcher, eds.), pp. 195–253, Plenum Press, New York.Google Scholar
  36. 36.
    Trahar, W.J. and L.J. Warren. 1976. The flotability of very fine particles — a review. Int. J. Miner. Process. 3: 103–131.Google Scholar
  37. 37.
    Van Olphen, H. 1977. An Introduction to Clay Colloid Chemistry. Interscience, New York.Google Scholar
  38. 38.
    Zajic, J.E., H. Guignard, and D.F. Gerson. 1977. Emulsifying surface active agents fromCorynebacterium hydrocarboclasters. Biotechnol. Bioeng. 19: 1285–1301.PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 1989

Authors and Affiliations

  • Linda L. Blackall
    • 1
  • Kevin C. Marshall
    • 2
  1. 1.Department of MicrobiologyUniversity of QueenslandSt. LuciaAustralia
  2. 2.School of MicrobiologyUniversity of New South WalesKensingtonAustralia

Personalised recommendations