Advertisement

Archiv für Elektrotechnik

, Volume 77, Issue 6, pp 441–449 | Cite as

Frequency and time domain analysis of the scattered field of buried dielectric targets

  • I. Diamandi
  • J. N. Sahalos
Article

Contents

In this paper a frequency domain analysis of buried dielectric cylindrical targets is given. An integral equation, which is solved by Galerkin's method along with plane wave basis functions, is used to obtain the scattered field. Numerical results in the frequency as well as the time domain-via FFT-for various underground bodies in various depths are given. The results show the applicability of the method in the target identification process.

Keywords

Integral Equation Basis Function Frequency Domain Identification Process Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Frequenz- und Zeit-Bereichsanalyse der Streufelder von vergrabenen dielektrischen Zielen

Übersicht

Die Arbeit präsentiert eine Frequenzbereichs-Analyse von unterirdischen dielektrischen, zylinderförmigen Zielen. Das gestreute Feld wird durch eine Entwicklung in ebene Wellen und die Lösung einer Integral-Gleichung mit Galerkins Verfahren gefunden. Numerische Ergebnisse im Frequenzbereich, sowie durch FFT auch im Zeitbereich, werden für eine Anzahl von Körpern in unterschiedlichen Tiefen angegeben. Die Ergebnisse zeigen die Anwendbarkeit der Methode für Ziel-Identifikationsaufgaben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richmond, J. H.: Scattering by a dielectric cylinder of arbitrary cross section shape. IEEE Trans. Antennas & Propag. AP-13 (1965) 334–341Google Scholar
  2. 2.
    Richmond, J. H.: TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape. IEEE Trans. Antennas & Propag. AP-14 (1966) 460–464Google Scholar
  3. 3.
    Livesay, D. E.;Chen, K. M.: Electromagnetic fields induced inside arbitrarily shaped biological bodies. IEEE Trans. on Microwave Theory & Techniques MTT-22 (1974) 1273–1280Google Scholar
  4. 4.
    Tsai, C. T.;Massoudi, H.;Durney, C. H.;Iskander, M. F.: A procedure for calculating fields inside arbitrarily shaped, inhomogeneous dielectric bodies using linear basis functions with the moment method. IEEE Trans. on Microwave Theory & Techniques MTT-34 (1986) 1131–1139Google Scholar
  5. 5.
    Izadian, J. S.;Peters, L. Jr.;Richmond, J. H.: Computation of scattering from penetrable cylinders with improved numerical efficiency. IEEE Trans. Geoscience & Remote Sensing GE-22 (1984) 52–61Google Scholar
  6. 6.
    Harrington, R. F.: Time-harmonic electromagnetic fields. Mc Graw-Hill. NY, 1961Google Scholar
  7. 7.
    Cochran, W. T.: What is the fast fourier transform. Proc. of the IEEE, vol. 55 (1967) 1664–1674Google Scholar
  8. 8.
    Thiele, G. A.;Chan, G. K.: Application of the hybrid technique to time domain problems. IEEE Trans. on Antennas and Propagation AP-26 (1978) 151–155Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • I. Diamandi
    • 1
  • J. N. Sahalos
    • 1
  1. 1.Sect. of Applied and Environmental PhysicsAristotle University, Department of PhysicsThessalonikiGreece

Personalised recommendations