Current Microbiology

, Volume 5, Issue 4, pp 223–226 | Cite as

Influence of aeration on hydrogen cyanide biosynthesis byPseudomonas aeruginosa

  • Kathleen F. Castric
  • David A. McDevitt
  • Peter A. Castric


Batch cultures ofPseudomonas aeruginosa were able to produce only low levels of cyanide during logarithmic growth with adequate aeration. The reduction of aeration caused a rapid increase in the ability of such cultures to produce hydrogen cyanide. The immediacy and the magnitude of this response depended on the oxygen level, with a concentration of 4% in the aeration gas giving optimal results. The reestablishment of normal aeration resulted in a cessation of the increase of the culture's cyanogenic capacity. This effect appeared to be a combination of inactivation of the hydrogen cyanide synthase and repression of synthesis of this enzyme.


Oxygen Hydrogen Enzyme Cyanide Aeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Asmus, E., Garschagen, H. 1953. The use of barbituric acid for the photometric determination of cyanide and thiocyanate. Zeitschrift für Analytische Chemie138:414–422.Google Scholar
  2. 2.
    Castric, P. A. 1975. Hydrogen cyanide, a secondary metabolite ofPseudomonas aeruginosa. Canadian Journal of Microbiology21:613–618.PubMedGoogle Scholar
  3. 3.
    Castric, P. A. 1977. Glycine metabolism byPseudomonas aeruginosa: Hydrogen cyanide biosynthesis. Journal of Bacteriology130:826–831.PubMedGoogle Scholar
  4. 4.
    Castric, P. A. 1981. The metabolism of hydrogen cyanide by bacteria. In: Conn, E. E., Knowles, C. J., Vennesland, B., Wissing, F. (eds.), Hydrogen cyanide metabolsim. New York: Academic Press. In press.Google Scholar
  5. 5.
    Castric, P. A., Castric, K. F., Meganathan, R. 1981. Factors influencing the termination of cyanogenesis inPseudomonas aeruginosa. In: Conn, E. E., Knowles, C. J., Vennesland, B., Wissing, F. (eds.), Hydrogen cyanide metabolism. New York: Academic Press. In press.Google Scholar
  6. 6.
    Castric, P. A., Ebert, R. F., Castric, K. F. 1979. The relationship between growth phase and cyanogenesis inPseudomonas aeruginosa. Current Microbiology2:287–292.Google Scholar
  7. 7.
    Goldberg, R. B., Hanau, R. 1980. Regulation ofKlebsiella pneumoniae hut operons by oxygen. Journal of Bacteriology141:745–750.PubMedGoogle Scholar
  8. 8.
    Harrison, D. E. F. 1976. The regulation of respiration rate in growing bacteria, pp. 243–313. In: Rose, A. H., Tempest, D. W. (eds.), Advances in microbial physiology vol. 14. London, New York, San Francisco: Academic Press.Google Scholar
  9. 9.
    Hassan, H. M., Fridovitch, I. 1980. Mechanism of the antibiotic action of pyocyanine. Journal of Bacteriology141:156–163.PubMedGoogle Scholar
  10. 10.
    Jones, C. W. 1979. Energy metabolism in aerobes, pp. 49–84. In: Quayle, J. R. (ed.), Microbial biochemistry. International Review of Biochemistry, vol. 21. Baltimore: University Park Press.Google Scholar
  11. 11.
    Knowles, C. J. 1976. Microorganisms and cyanide. Bacteriological Reviews40:652–680.PubMedGoogle Scholar
  12. 12.
    Kralik, C. A., Castric, P. A. 1979. Respiration and cyanogenesis inPseudomonas aeruginosa. Current Microbiology3:71–74.Google Scholar
  13. 13.
    Meganathan, R., Castric, P. A. 1977. The effect of inorganic phosphate on cyanogenesis byPseudomonas aeruginosa. Archives of Microbiology114:51–54.PubMedGoogle Scholar
  14. 14.
    Robson, R. L., Postgate, J. R. 1980. Oxygen and hydrogen in biological nitrogen fixation. Annual Review of Microbilogy34:183–207.Google Scholar
  15. 15.
    Rodgers, P. B., Knowles, C. J. 1978. Cyanide production and degradation during growth ofChromobacterium violaceum. Journal of General Microbiology108:261–267.Google Scholar
  16. 16.
    Tempest, D. W., Neijssel, O. M. 1978. Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments, pp. 105–153. In: Alexander, M. (ed.), Advances in microbial ecology, vol 2 New York: Plenum Press.Google Scholar
  17. 17.
    Weinberg, E. D. 1971. Secondary metabolism: Raison d'être. Perspectives in Biology and Medicine14: 565–577.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • Kathleen F. Castric
    • 1
  • David A. McDevitt
    • 1
  • Peter A. Castric
    • 1
  1. 1.Department of Biological SciencesDuquesne UniversityPittsburghUSA

Personalised recommendations