Current Microbiology

, Volume 25, Issue 2, pp 119–123 | Cite as

The eubacterial endosymbionts of whiteflies (homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs

  • Marta A. Clark
  • Linda Baumann
  • Mark A. Munson
  • Paul Baumann
  • Bruce C. Campbell
  • James E. Duffus
  • Lance S. Osborne
  • Nancy A. Moran


Whiteflies (superfamily Aleyrodoidea) contain eubacterial endosymbionts localized within host cells known as mycetocytes. Sequence analysis of the genes for the 16S rRNA of the endosymbionts ofBemisia tabaci, Siphoninus phillyreae, andTrialeurodes vaporariorum indicates that these organisms are closely related and constitute a distinct lineage within the γ-subdivision of theProteobacteria. The endosymbionts of whiteflies are unrelated to the endosymbionts of aphids and mealybugs, which are in two separate lineages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Bethke JA, Paine TD, Nuessly, GS (1991) Comparative biology, morphometrics, and development of two populations ofBemisia tabaci (Homoptera: Aleyrodidae) on cotton and poinsettia. Ann Entomol Soc Am 84:407–411Google Scholar
  2. 2.
    Buchner P (1965) Endosymbiosis of animals with plant microorganisms. New York: Interscience Publisherse, Inc., pp. 210–338Google Scholar
  3. 3.
    Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36:431–457Google Scholar
  4. 4.
    Campbell BC (1990) On the role of microbial symbiotes in herbivorous insects. In: Bernays EA (ed) Insect-plant interactions, vol. I. Boca Raton, Fla.: CRC Press, Inc., pp 1–44Google Scholar
  5. 5.
    Campbell BC, Bragg TS, Turner CE (1992) Phylogeny of symbiotic bacteria of four weevil species (Coleoptera: Curculionidae) based on analysis of 16S ribosomal DNA. Insect Biochem Mol Biol, in pressGoogle Scholar
  6. 6.
    Cohen S, Duffus JE, Liu HY (1992) A newBemisia tabaci biotype in the Southwestern United States and its role in silverleaf of squash and transmission of lettuce infectious yellows virus. Phytopathology 82:86–90Google Scholar
  7. 7.
    Daly HV, Doyen JT, Ehrlich PR (1978) Introduction to insect biology and diversity. New York: McGraw-Hill Book Co., pp 364–367Google Scholar
  8. 8.
    David BV (1990) Key to tribes of whiteflies (Aleyrodidae: Homoptera) of India. J Insect Sci 3:13–17Google Scholar
  9. 9.
    Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev 64:409–434Google Scholar
  10. 10.
    Fox GE, Wisotzkey JD, Jurtshuk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170Google Scholar
  11. 11.
    Gerling D (ed) (1990) Whiteflies: their bionomics, pest status and management. Newcastle upon Tyne: Athenaeum PressGoogle Scholar
  12. 12.
    Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991)Arsenophonus nasoniae gen. now., sp. nov., the causative agent of the son-killer trait in the parasitic waspNasonia vitripennis. Int J Syst Bacteriol 41:563–565Google Scholar
  13. 13.
    Hennig W (1980) Insect phylogeny (edition with revisionary notes by D Schlee). New York, Wiley and SonsGoogle Scholar
  14. 14.
    Houk EJ, Griffiths GW (1980) Intracellular symbiotes of the Homoptera. Annu Rev Entomol 25:161–172Google Scholar
  15. 15.
    Ishikawa H (1989) Biochemical and molecular aspects of endosymbiosis in insects. Int Rev Cytol 116:1–45Google Scholar
  16. 16.
    Lai C-Y, Baumann P (1992) Genetic analysis of an aphid endosymbiont DNA fragment homologous to thernpA-rpmH-dnaA-dnaN-gyrB region of eubacteria. Gene 113:175–181Google Scholar
  17. 17.
    Munson MA, Baumann P, Kinsey MG (1991)Buchnera gen. nov. andBuchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 41:566–568Google Scholar
  18. 18.
    Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324Google Scholar
  19. 19.
    Munson MA, Baumann L, Baumann P (1992)Buchnera aphidicola, the endosymbiont of aphids, contains genes for four ribosomal RNA proteins, initiation factor-3, and the α-subunit of RNA polymerase. Curr Microbiol 24:23–29Google Scholar
  20. 20.
    Munson MA, Baumann P, Moran NA (1992) Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol Phylogen Evol, in pressGoogle Scholar
  21. 21.
    Neefs J-M, Van de Peer Y, Hendriks L, De Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:r2237-r2317Google Scholar
  22. 22.
    Perring TM, Cooper A, Kazmer DJ (1992) Identification of the poinsettia strain ofBemisia tabaci (Homoptera: Aleyrodidae) on broccoli by electrophoresis. J Econ Entomol, in pressGoogle Scholar
  23. 23.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning; a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
  24. 24.
    Srivastava PN (1987) Nutritional physiology. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies, and control, vol. 2A. Amsterdam: Elsevier Biomedical Press, pp 99–121Google Scholar
  25. 25.
    Swofford DL (1991) PAUP: phylogenetic analysis using parsimony. MacIntosh version 3.0r+3. Champaign, Ill.: Illinois Natural History SurveyGoogle Scholar
  26. 26.
    Tremblay E (1959) Osservazioni sulla simbiosi endocellulare di alcuni Aleyrodidae (Bemisia tabaci Gennad.,Aleurolobus olivinus Silv.,Trialeurodes vaporariorum West.). Boll Lab Entomol Agric “F. Silvestry” Portici 27:210–246Google Scholar
  27. 27.
    Unterman BM, Baumann P, McLean DL (1989) Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol 171:2970–2974Google Scholar
  28. 28.
    Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP, Baca O, Mandelco L, Sechrest JE, Weiss E, Woese CR (1989) Phylogenetic diversity of theRickettsiae. J Bacteriol 171:4202–4206Google Scholar
  29. 29.
    Weiss E, Moulder JW (1984) Coxiella. In: Krieg NR, Holt JG, (eds) Bergey's manual of determinative bacteriology, vol. 1. Baltimore: Williams & Wilkins, pp 701–704Google Scholar
  30. 30.
    Weiss E, Dasch GA, Chang K-P (1984) Wolbachia. In Krieg NR, Holt JG (eds) Bergey's manual of determinative bacteriology, vol. 1. Baltimore: Williams & Wilkins, pp 711–713Google Scholar
  31. 31.
    Woese, CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  32. 32.
    Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W, Stackebrandt E (1985) The phylogeny of purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Marta A. Clark
    • 1
  • Linda Baumann
    • 1
  • Mark A. Munson
    • 1
  • Paul Baumann
    • 1
  • Bruce C. Campbell
    • 2
  • James E. Duffus
    • 3
  • Lance S. Osborne
    • 4
  • Nancy A. Moran
    • 5
  1. 1.Department of MicrobiologyUniversity of CaliforniaDavisUSA
  2. 2.U.S. Department of AgricultureARSAlbanyUSA
  3. 3.U. S. Department of AgricultureARSSalinasUSA
  4. 4.AREC-ApopkaUniversity of FloridaApopka
  5. 5.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations