Somatic Cell and Molecular Genetics

, Volume 12, Issue 3, pp 225–236

Ribosomal protein gene sequences map to human chromosomes 5, 8, and 17

  • Noboru N. Nakamichi
  • Fa -Ten Kao
  • John Wasmuth
  • Donald J. Roufa


DNA sequences complementary to six mammalian ribosomal protein (r-protein) cDNAs are assigned to human chromosomal linkage groups in human-Chinese hamster hybrid cell clones. Ten r-protein DNA fragments map to chromosomes 5, 8 and 17, indicating that these important, housekeeping genes are distributed to multiple sites in the human genome. Each of the chromosome assignments, determined initially by surveying Chinese hamster-human hybrid cell clones with complex karyotypes using Chinese hamster and human cDNA probes, were confirmed in critical minipanels of highly reduced or monochromosomal hybrid cells. As all 10 fragments mapped to only three human chromosomes, r-protein sequences appear to be distributed nonrandomly within human DNA. The r-protein S14 sequence assigned to human chromosome 5 (5q23–5q33) rescues Chinese hamster emetine-resistance mutations (emt b)in interspecific hybrids. Therefore, this sequence corresponds to the transcriptionally active human RPS14gene. In contrast, other r-protein DNA sequences examined likely are a mixture of functional genes and inactive pseudogenes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Monk, R.J., Meyuhas, O., and Perry R.P. (1981).Cell 24:301–306.PubMedGoogle Scholar
  2. 2.
    D'Eustachio, P., Meyuhas, O., Ruddle, F., and Perry, R.P. (1981).Cell 24:307–312.PubMedGoogle Scholar
  3. 3.
    Dudov, K., and Perry, R. (1984).Cell 37:457–468.PubMedGoogle Scholar
  4. 4.
    Peled-Yalif, E., Cohen-Binder, I., Meyuhas, O. (1984).Gene 29:157–166.PubMedGoogle Scholar
  5. 5.
    Wiedemann, L., and Perry, R. (1984).Mol. Cell. Biol. 4:2518–2528.PubMedGoogle Scholar
  6. 6.
    Nakamichi, N., Rhoads, D.D., and Roufa, D.J. (1983).J. Biol. Chem. 258:13236–13242.PubMedGoogle Scholar
  7. 7.
    Klein, A., and Meyuhas, O. (1984).Nucleic Acids Res. 12:3763–3776.PubMedGoogle Scholar
  8. 8.
    Faliks, D., and Meyuhas, O. (1982).Nucleic Acid Res. 10:789–801.PubMedGoogle Scholar
  9. 9.
    Geyer, P.K., Meyuhas, O., Perry, R.P., and Johnson L.F. (1982).Mol. Cell. Biol. 2:685–693.PubMedGoogle Scholar
  10. 10.
    Hackett, P., Egberts, E., and Traub, P. (1978).J. Mol. Biol. 119:253–267.PubMedGoogle Scholar
  11. 11.
    Ignotz, G.G., Hokari, S., Dephilip, R.M., Tsukada, K., and Lieberman, I. (1981).Biochemistry 20:2550–2558.PubMedGoogle Scholar
  12. 12.
    Nabeshima, Y.-I., and Ogata, K. (1980).Eur. J. Biochem. 107:323–329.PubMedGoogle Scholar
  13. 13.
    Ramagopal, S., and Ennis, H.L. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:3083–3087.Google Scholar
  14. 14.
    Santon, J.B., and Pellegrini, M. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:5649–5653.PubMedGoogle Scholar
  15. 15.
    Wejksnora, P.J., and Warner, J.R. (1981).J. Biol. Chem. 256:9406–9413.PubMedGoogle Scholar
  16. 16.
    Lindahl, L., Jaskunas, S.R., Dennis, P.P., and Nomura, M. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:2743–2747.PubMedGoogle Scholar
  17. 17.
    Leer, R., Van Raamsdonk-Duin, M., Kraakman, P., Mager, W., and Planta, R. (1985).Nucleic Acids Res. 13:701–709.PubMedGoogle Scholar
  18. 18.
    Molenaar, C., Woudt, L., Jansen, A., Mager, W., and Planta, R. (1984).Nucleic Acids Res. 12:7345–7358.PubMedGoogle Scholar
  19. 19.
    Marchionni, M.A., and Roufa, D.J. (1981).Cell 26:245–258.PubMedGoogle Scholar
  20. 20.
    Marchionni, M.A., and Roufa, D.J. (1981).J. Virol. 38:294–304.PubMedGoogle Scholar
  21. 21.
    Rhoads, D., and Roufa, D. (1985).Mol. Cell. Biol. 5:1655–1659.PubMedGoogle Scholar
  22. 22.
    Cheung, P., Kao, F.-T., Liao Law, M., Jones, C., Puck, T.T., and Chan L. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:508–511.PubMedGoogle Scholar
  23. 23.
    Lai, E., Kao, F., Law, M., and Woo, S. (1983).Am. J. Hum. Genet. 35:385–392.PubMedGoogle Scholar
  24. 24.
    Inui, K., Kao, F., Fujibayashi, S., Jones, C., Morse, H., Law, M., and Wenger, D. (1985).Hum. Genet. (in press).Google Scholar
  25. 25.
    Moore, M., Kao, F., Tsao, Y., and Chan, L. (1984).Biochem. Biophys. Res. Commun. 123:1–7.PubMedGoogle Scholar
  26. 26.
    Dana, S., and Wasmuth, J. (1982).Mol. Cell. Biol. 2:1220–1228.PubMedGoogle Scholar
  27. 27.
    Dana, S., and Wasmuth, J.J. (1982).Somat. Cell Genet. 8:245–264.PubMedGoogle Scholar
  28. 28.
    Carlock, L., Skarecky, D., Dana, S., and Wasmuth, J. (1985).Am. J. Hum. Genet, (in press).Google Scholar
  29. 29.
    Gubler, U., and Hoffman, B. (1983).Gene 23:263–269.Google Scholar
  30. 30.
    Grunstein, M., and Hogness, D.S. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:3961–3965.PubMedGoogle Scholar
  31. 31.
    Southern, E.M. (1975).J. Mol. Biol. 98:503–517.PubMedGoogle Scholar
  32. 32.
    Madjar, J.-J., Frahm, M., McGill, S., and Roufa, D.J. (1983).Mol. Cell. Biol. 3:190–197.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Noboru N. Nakamichi
    • 1
  • Fa -Ten Kao
    • 2
  • John Wasmuth
    • 3
  • Donald J. Roufa
    • 1
  1. 1.Division of BiologyKansas State UniversityManhattan
  2. 2.Eleanor Roosevelt Institute for Cancer Research and Department of Biochemistry, Biophysics and GeneticsUniversity of Colorado Health Sciences CenterDenver
  3. 3.Department of Biological Chemistry, California College of MedicineUniversity of CaliforniaIrvine

Personalised recommendations