Advertisement

Plasma Chemistry and Plasma Processing

, Volume 14, Issue 4, pp 451–490 | Cite as

Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas

  • A. B. Murphy
  • C. J. Arundelli
Article

Abstract

Calculated values of the viscosity, thermal conductivity, and electrical conductivity of argon, nitrogen, and oxygen plasmas, and mixtures of argon anti nitrogen and of argon anti oxygen, are presented. In addition, combined ordinary, pressure, and thermal diffusion coefficients are given for the gas mixtures. These three combined diffusion coefficients fully describe di fusion of the two gases, irrespective of their degree of dissociation or ionizati on. The calculations, which assume local thermodynamic equilibrium, are performed! for atmospheric-pressure plasmas in the temperature range /torn 300 to 30,000 K. A number of the collision integrals used in calculating the transport coefficients are significantly more accurate than values used in previous theoretical studies, resulting in more reliable values of the transport coefficients. The results are compared with those of published theoretical and experimental studies.

Key words

Transport coefficients transport properties viscosity thermal conductivity electrical conductivity diffusion coefficient Chapman Enskog method argon nitrogen oxygen plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Murphy,J. Chem. Phys. 99, 1340 (1993).Google Scholar
  2. 2.
    A. B. Murphy,Phys. Rev. E 48, 3594 (1993).Google Scholar
  3. 3.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, 2nd edn., Wiley, New York (1964).Google Scholar
  4. 4.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases, 3rd edn., Cambridge University Press, Cambridge, UK (1970).Google Scholar
  5. 5.
    J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (1973).Google Scholar
  6. 6.
    C. E. Moore, “Atomic energy levels,” Circular 467, Vol. 1, US National Bureau of Standards, Washington, DC (1949), pp. 32 40, 45 52, 211 220.Google Scholar
  7. 7.
    M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud,J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).Google Scholar
  8. 8.
    P. Kovitya.IEEE Trans. Plasma Sci. 13, 587 (1985).Google Scholar
  9. 9.
    M. Capitelli, E. Ficocelli, and E. Molinari,Z. Naturforsch. 26a, 673 (1971).Google Scholar
  10. 10.
    M. Capitelli, E. Ficocelli, and E. Molinari,Rev. Int. Hautes Temp. Refract. 7, 153 (1970).Google Scholar
  11. 11.
    M. Capitelli,J. Plasma Phys. 7, 99 (1972).Google Scholar
  12. 12.
    R. A. Svehla and B. J. McBride, “Fortran IV computer program for calculation of thermodynamic and transport properties of complex chemical systems,” Technical Note TN D7056. NASA, Washington, DC (1973).Google Scholar
  13. 13.
    P. Kovitya, “Theoretical determination of material functions of plasmas formed From ablated PTFE, alumina, PVC, and Perspex for the temperature range of 5,000 to 30,000 K,” Technical Memo No. 3. CSIRO Division of Applied Physics, Sydney, Australia (1982).Google Scholar
  14. 14.
    Ref. 3. pp. 531 2.Google Scholar
  15. 15.
    Ref. 5, p. 227.Google Scholar
  16. 16.
    C. Muckenfuss and C. F. Curtiss,J. Chem. Phys. 29, 1273 (1958).Google Scholar
  17. 17.
    Ref. 5, p. 229.Google Scholar
  18. 18.
    R. S. Devoto.Phys. Fluids 10, 2105 (1967).Google Scholar
  19. 19.
    J. O. Hirschfelder,J. Chem. Phys. 26, 383 (1957).Google Scholar
  20. 20.
    J. O. Hirschfelder, inProceedings of the Sixth Symposium (International) Oil Combustion, Reinhold, New York (1957). p. 351.Google Scholar
  21. 21.
    J. O. Hirschfelder. inProceedings of the Joba Conference on Thermodynamic and Transport Properties of Fluids, Institution of Mechanical Engineers and International Union of Pure and Applied Chemistry, London (1958), p. 133.Google Scholar
  22. 22.
    L. Monchick, K. S. Yun, and E. A. Mason,J. Chem. Phys. 39, 654 (1963).Google Scholar
  23. 23.
    J. N. Butler and R. S. Brokaw,J. Chem. Phys. 26, 1636 (1957).Google Scholar
  24. 24.
    R. S. Brokaw,J. Chem. Phys. 32, 1005 (1960).Google Scholar
  25. 25.
    M. Capitelli,J. Plasma Phys. 14, 365 (1975).Google Scholar
  26. 26.
    M. Capitelli,J. Phys. Colloq. 38, C3 227 (1977).Google Scholar
  27. 27.
    Ref. 5, p. 174.Google Scholar
  28. 28.
    Ref. 3, p. 479.Google Scholar
  29. 29.
    R. S. Devoto,Phys. Fluids 9, 1230 (1966).Google Scholar
  30. 30.
    J. A. Barker, W. Fock, and F. Smith,Phys. Fluid 7, 897 (1964).Google Scholar
  31. 31.
    G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham,Intermolecular Forces: Their Origin and Determination, Clarendon Press, Oxford (1981).Google Scholar
  32. 32.
    L. Monchick,Phys. Fluids 2, 695 (1959).Google Scholar
  33. 33.
    T. Kihara, M. H. Taylor, and J. O. Hirschlelder,Phys. Fluids 3, 715 (1960).Google Scholar
  34. 34.
    E. A. Mason, R. J. Munn, and F. J. Smith.Phys. Fluids 10, 1827 (1967).Google Scholar
  35. 35.
    R. S. Devoto,Phys. Fluids 16, 616 (1973).Google Scholar
  36. 36.
    R. A. Aziz and M. J. Slaman,J. Chem. Phys. 92, 1030 (1990).Google Scholar
  37. 37.
    M. Capitelli and R. S. Devoto,Phys. Fluids 16, 1835 (1973).Google Scholar
  38. 38.
    E. Levin, H. Partridge, and J. R. Stallcop,J. Thermophys. Heat Transfer 4, 469 (1990).Google Scholar
  39. 39.
    B. Brunetti, G. Liuti, E. Luzzatti, F. Pirani, and G. G. Volpi,J. Chem. Phys. 79, 273 (1983).Google Scholar
  40. 40.
    B. Brunetti, G. Liuti, E. Luzzatti, F. Pirani, and F. Vecchiocattivi,J. Chem. Phys. 74, 6734 (1981).Google Scholar
  41. 41.
    J. Aubreton, C. Bonnefoi, and J. M. Mexmain,Rev. Phys. Appl. 21, 365 (1986).Google Scholar
  42. 42.
    F. Pirani and F. Vecchiocattivi,Chem. Phys. 59, 387 (1981).Google Scholar
  43. 43.
    E. B. Smith and A. R. Tindell,Faraday Discuss. Chem. Soc. 73, 221 (1982).Google Scholar
  44. 44.
    M. Capitelli and E. Ficocelli,J. Phys. B. At. Mol. Phys. 5, 2066 (1972).Google Scholar
  45. 45.
    K. S. Yun and E. A. Mason,Phys. Fluids 5, 380 (1962).Google Scholar
  46. 46.
    J. Bacri and S. Raffanel,Plasma Chem. Plasma Process. 9, 133 (1989).Google Scholar
  47. 47.
    A. V. Phelps,J. Phys. Chem. Ref. Data 20, 557 (1991).Google Scholar
  48. 48.
    J. R. Stallcop, H. Partridge, and E. Levin,J. Chem. Phys. 95, 6429 (1991).Google Scholar
  49. 49.
    P. Tosi, O. Dmitrijev, and D. Basso,Chem. Phys. Lett. 200, 483 (1992).Google Scholar
  50. 50.
    H.-P. Weise and H.-U. Mittmann,Z. Naturforsch. 29a, 1143 (1974).Google Scholar
  51. 51.
    J. A. Rutherford and D. A. Vroom,J. Chem. Phys. 61, 2514 (1974).Google Scholar
  52. 52.
    V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov,Sov. Phys. JETP 27, 924 (1968).Google Scholar
  53. 53.
    T. M. Miller, inCRC Handbook of Chemistry and Physics, 73rd edn., D. R. Lide, ed., CRC Press, Boca Raton, Florida (1992), pp. 194–210.Google Scholar
  54. 54.
    A. Dalgarno,Philos. Trans. Roy. Soc. London 250, 426 (1958).Google Scholar
  55. 55.
    H. B. Milloy, R. W. Crompton, J. A. Rees, and A. G. Robertson,Aust. J. Phys. 30, 61 (1977).Google Scholar
  56. 56.
    L. S. Frost and A. V. Phelps,Phys. Rev. 136, A1538 (1964).Google Scholar
  57. 57.
    A. G. Engelhardt, A. V. Phelps, and C. G. Risk,Phys. Rev. 135, A1566 (1964).Google Scholar
  58. 58.
    R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M. Trujillo,Phys. Rev. 129, 2069 (1963).Google Scholar
  59. 59.
    Y. Itikawa,At. Data Nucl. Data Tables 14, 1 (1974).Google Scholar
  60. 60.
    Y. Itikawa,At. Data Nucl. Data Tables 21, 69 (1978).Google Scholar
  61. 61.
    R. D. Hake, Jr. and A. V. Phelps,Phys. Rev. 158, 70 (1967).Google Scholar
  62. 62.
    L. D. Thomas and R. K. Nesbet,Phys. Rev. A 12, 1729 (1975).Google Scholar
  63. 63.
    R. A. Dawe and E. B. Smith,J. Chem. Phys. 52, 693 (1970).Google Scholar
  64. 64.
    F. A. Guevara, B. B. McInteer, and W. E. Wageman,Phys. Fluids 12, 2493 (1969).Google Scholar
  65. 65.
    J. M. Parson, P. E. Siska, and Y. T. Lee,J. Chem. Phys. 56, 1511 (1972).Google Scholar
  66. 66.
    P. P. Kulik, I. G. Panevin, and V. I. Khvesyuk,High Temp. (USSR) 1, 45 (1963).Google Scholar
  67. 67.
    P. P. Kulik,High Temp. (USSR) 9, 389 (1971).Google Scholar
  68. 68.
    J. T. Moseley, R. P. Saxon, B. A. Huber, P. C. Cosby, R. Abouaf, and M. Tadjeddine,J. Chem. Phys. 67, 1659 (1977).Google Scholar
  69. 69.
    H. H. Michels, R. H. Hobbs, and L. A. Wright,J. Chem. Phys. 69, 5151 (1978).Google Scholar
  70. 70.
    D. J. Collins and W. A. Menard,Trans. ASME, J. Heat Transfer 88, 52 (1966).Google Scholar
  71. 71.
    J. Aubreton and P. Fauchais,Rev. Phys. Appl. 18, 51 (1983).Google Scholar
  72. 72.
    E. W. McDaniel,Collision Phenomena in Ionised Gases, Wiley, New York (1964) p. 252.Google Scholar
  73. 73.
    R. Hegerberg, M. T. Eiford, and H. R. Skullerud,J. Phys. B: At. Mol Phys. 15, 797 (1982).Google Scholar
  74. 74.
    I. Bues, H. J. Patt, and J. Richter,Z. Angew. Phys. 22, 345 (1967).Google Scholar
  75. 75.
    H. W. Emmons,Phys. Fluids 10, 1125 (1967).Google Scholar
  76. 76.
    N. N. Tsitelauri, Candidate's Dissertation, ENIN Academy of the Sciences of the USSR, 1969.Google Scholar
  77. 77.
    N. B. Vargaftik,Tables on the Thermophysical Properties of Liquids and Gases, 2nd edn., Hemisphere, Washington, DC (1975).Google Scholar
  78. 78.
    K.-S. Yun, S. Weissman, and E. A. Mason,Phys. Fluids 5, 672 (1962).Google Scholar
  79. 79.
    M. Capitelli, C. Gorse, and P. Fauchais,J. Phys. (Paris) 38, 653 (1977).Google Scholar
  80. 80.
    M. Capitelli, U. T. Lamanna, C. Guidotti, and G. P. Arrighini,Chem. Phys. 19, 269 (1977).Google Scholar
  81. 81.
    U. Plantikow,Z. Phys. 237, 388 (1970).Google Scholar
  82. 82.
    W. Hermann and E. Schade,Z. Phys. 233, 333 (1970).Google Scholar
  83. 83.
    M.-F. Elchinger, B. Pateyron, G. Delluc, and P. Fauchais,Colloq. Phys. 51, C5–3 (1990).Google Scholar
  84. 84.
    A. W. Neuberger,AIAA J. 13, 3 (1975).Google Scholar
  85. 85.
    E. I. Asinovsky, A. V. Kirillin, E. P. Pakhomov, and V. I. Shabashov,Proc. IEEE 59, 592 (1971).Google Scholar
  86. 86.
    C. F. Bonilla, R. D. Brooks, and P. Z. Walker, inProceedings of General Discussion of Heat Transfer, Institution of Mechanical Engineers, London (1951), p. 167.Google Scholar
  87. 87.
    J. M. Yos, Report RAD TF-65, AVCO Corporation, Wilmington, Massachusetts (1965).Google Scholar
  88. 88.
    N. B. Vargaftik and L. P. Filippov,Thermal Conductivity of Gases and Liquids (Data Book), Standards Press, Moscow (1970).Google Scholar
  89. 89.
    I. A. Krinberg,High. Temp. (USSR) 3, 606 (1965).Google Scholar
  90. 90.
    N. H. F. Beebe, E. W. Thulstrup, and A. Andersen,J. Chem. Phys. 64, 2080 (1976).Google Scholar
  91. 91.
    W. Neumann and U. Sacklowski.Beitr. Plasma. Phys. 8, 57 (1968).Google Scholar
  92. 92.
    M. Capitelli, C. Gorse, and P. Fauchais, inProceedings of the 12th International Conference on Phenomena in Ionized Gases, Eindhoven, 1975, Part 1, J. C. A. Holscher and D. C. Schram, eds.s North-Holland, Amsterdam (1975), p. 270.Google Scholar
  93. 93.
    M. Capitelli and E. Molinari,J. Plasma Phys. 4, 335 (1970).Google Scholar
  94. 94.
    H. R. Greim,Phys. Rev. 128, 997 (1962).Google Scholar
  95. 95.
    E. Luzzati, F. Pirani, and F. Vecchiocattivi,Mol. Phys. 34, 1279 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. B. Murphy
    • 1
  • C. J. Arundelli
    • 2
  1. 1.CSIRO Division of Applied PhysicsLindfieldAustralia
  2. 2.Department of PhysicsUniversity of Western SydneyCampbelltownAustralia

Personalised recommendations