Journal of Industrial Microbiology

, Volume 16, Issue 2, pp 129–133 | Cite as

Production of an extracellular polysaccharide byAgrobacterium sp DS3 NRRL B-14297 isolated from soil

  • C T Hou
  • J A Ahlgren
  • W Brown
  • J J Nicholson
Article

Abstract

A bacterium isolated from soil and identified asAgrobacterium sp produced a water-soluble extracellular polysaccharide capable of producing highly viscous solutions. Gas chromatographic analysis revealed a sugar composition of glucose, galactose and mannose in the molar ratio of 7.5∶2.4∶1, together with 3.7% (w/w) pyruvic acid. Methylation analyses showed the presence of (1→3)-, (1→4)- and (1→6)-linked glucose, (1→3)- and (1→4, 1→6)-linked galactose and a small portion of (1→3)-linked mannose residues. Succinic acid was not present. The molecular weight of the polysaccharide was estimated by light scattering to be 2×106 Da. The viscosity of solutions containing the polysaccharide remained constant from pH 3 to 11, and decreased by 50% when heated from 5 to 55°C. Maximum yield of the polysaccharide, 20 g L−1, was reached in 48 h at 30°C incubation.

Keywords

extracellular polysaccharide Agrobacterium viscous polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey RW and EJ Bourne. 1960. Color reactions given by sugars and diphenylamine-aniline spray reagents on paper chromatograms. J Chromatogr 4: 206–213.Google Scholar
  2. 2.
    Carlson DM and LW Mathews. 1966. Polyuronic acids produced byPseudomonas aeruginosa. Biochemistry 5: 2817–2822.PubMedGoogle Scholar
  3. 3.
    Chandrasekaran R, EJ Lee, VG Thailambal and LPTM Zevenhuizen. 1994. Molecular architecture of a galactoglucan fromRhizobium meliloti. Carbohydr Res 261: 279–295.PubMedGoogle Scholar
  4. 4.
    Cote GL and JA Ahlgren. 1995. Microbial Polysaccharides. In: Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn (Howe-Grant M, ed), pp 578–611, vol 16, John Wiley & Sons, New York.Google Scholar
  5. 5.
    DIFCO Manual. 10th edn, DIFCO Laboratories, Detroit, MI.Google Scholar
  6. 6.
    Dubois M, KA Gilles JK Hamilton, PA Rebers and F Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356.Google Scholar
  7. 7.
    Duckworth M and W Yaphe. 1970. Definitive assay for pyruvic acid in agar and other algal polysaccharides. Chem Ind (Lond) 23: 747–748.Google Scholar
  8. 8.
    Glazebrook J, JW Reed, TL Reuber and GC Walker. 1990. Genetic analyses ofRhizobium meliloti exopolysaccharides. Int J Biol Macromol 12: 67–70.PubMedGoogle Scholar
  9. 9.
    Halleck FE. 1967. New β-d-(1→3)-linked glucans with β-d-glucopyranosyl units appended at intervals by (1→6) linkages are produced by a variety of microorganisms. US Patent 3 301 848.Google Scholar
  10. 10.
    Harada T, M Masada, K Fujimori and I Maeda. 1966. Production of a firm, resilient gel-forming polysaccharide by a mutant ofAlcaligenes faecalis varmyxogenes 10C3. Agric Biol Chem 30: 196–198.Google Scholar
  11. 11.
    Harada T, A Misaki and H Saito. 1968. Curdlan: a bacterial gel-forming β-1,3-glucan. Arch Biochem Biophys 124: 292–298.PubMedGoogle Scholar
  12. 12.
    Harada T, M Terasaki and A Harada. 1993. In: Industrial Gums. Polysaccharides and Their Derivatives (Whistler RL and JN BeMiller, eds), pp 427–445, Academic Press, New York.Google Scholar
  13. 13.
    Hisamatsu M, J Abe, A Amemura and T Harada. 1980. Structural elucidation on succinoglycan and related polysaccharides fromAgrobacterium andRhizobium by fragmentation with two special beta-d-glycanases and methylation analysis. Agric Biol Chem 44: 1049–1055.Google Scholar
  14. 14.
    Hisamatsu M, K Sano, A Amemura and T Harada. 1978. Acidic polysaccharides containing succinic acid in various strains ofAgrobacterium.Carbohydr Res 61: 89–96.Google Scholar
  15. 15.
    Hou CT and MO Bagby. 1991. Production of a new compound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid byPseudomonas sp PR3. J Ind Microbiol 7: 123–130.Google Scholar
  16. 16.
    Hou CT, MO Bagby, RD Plattner and S Koritala. 1991. A novel compound 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by bioconversion. J Am Oil Chem Soc 68: 99–101.Google Scholar
  17. 17.
    Jeanes A and JE Pittsley. 1973. Viscosity profiles for aqueous dispersions of extracellular anionic microbial polysaccharides. J Appl Polym Sci 17: 1621–1624.Google Scholar
  18. 18.
    Lewis BA and F Smith. 1969. In: Thin-Layer Chromatography, A Laboratory Handbook, 2nd edn (Stahl S, ed), p 813, Springer-Verlag, New York.Google Scholar
  19. 19.
    Murphy PT and RL Whistler. 1973. In: Industrial Gums: Polysaccharides and Their Derivatives (Whistler RL, ed), pp 513–542, Academic Press, New York.Google Scholar
  20. 20.
    Nakanishi I, K Kimura, S Kushi and E Yamazaki. 1974. Complex formation of gel-forming bacterial (1→3)-β-d-glucans (curdlan-type polysaccharides) with dyes in aqueous solution. Carbohydr Res 32: 47–52.Google Scholar
  21. 21.
    Nakanishi I, K Kimura, T Suzuki, M Ishikawa, I Banno, T Sakane and T Harada. 1976. Determination of curdlan-type polysaccharide and some other β-1,3-glucan in microorganisms with aniline blue. J Gen Microbiol 22: 1–11.Google Scholar
  22. 22.
    Seymour FR, RD Plattner and ME Slodki. 1975. Gas-liquid chromatography-mass spectrometry of methylated and deuteriomethylated per-O-acetyl-aldononitriles fromd-mannose. Carbohydr Res 44: 181–198.Google Scholar
  23. 23.
    Sloneker JH and A Jeanes. 1962. Exocellular bacterial polysaccharide fromXanthomonas campestris NRRL B-1459. Part I. Constitution. Can J Chem 40: 2066–2071.Google Scholar
  24. 24.
    Sloneker JH and DG Orentas. 1962. Exocellular bacterial polysaccharide fromXanthomonas campestris NRRL B-1459. Part II. Linkage of the pyruvic acid. Can J Chem 40: 2188–2189.Google Scholar
  25. 25.
    Zevenhuizen LPTM. 1973. Methylation analysis of acidic exopolysaccharides ofRhizobium andAgrobacterium. Carbohydr Res 26: 409–419.Google Scholar
  26. 26.
    Zevenhuizen LPTM and P Faleschini. 1991. Effect of the concentration of sodium chloride in the medium on the relative properties of poly- and oligosaccharides excreted byRhizobium meliloti strain YE2SL. Carbohydr Res 209: 203–209.PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • C T Hou
    • 1
  • J A Ahlgren
    • 2
  • W Brown
    • 1
  • J J Nicholson
    • 2
  1. 1.Oil Chemical ResearchUSDAPeoriaUSA
  2. 2.Biopolymer Research Unit, National Center for Agricultural Utilization Research, ARSUSDAPeoriaUSA

Personalised recommendations