Advertisement

Journal of Industrial Microbiology

, Volume 16, Issue 2, pp 79–101 | Cite as

Environmental applications of immobilized microbial cells: A review

  • M B Cassidy
  • H Lee
  • J T Trevors
Article

Abstract

Immobilized microbial cells have been used extensively in various industrial and scientific endeavours. However, immobilized cells have not been used widely for environmental applications. This review examines many of the scientific and technical aspects involved in using immobilized microbial cells in environmental applications, with a particular focus on cells encapsulated in biopolymer gels. Some advantages and limitations of using immobilized cells in bioreactor studies are also discussed.

Keywords

alginate bacteria biodegradation bioremediation κ-carrageenan encapsulation immobilization microorganisms soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Ashour J, DM Joy, H Lee, HR Whiteley and S Zelin. 1994. Transport of microorganisms through soil. Water Air Soil Pollut 75: 141–158.Google Scholar
  2. 2.
    Acea MJ, CR Moore and M Alexander. 1988. Survival and growth of bacteria introduced into soil. Soil Biol Biochem 20: 509–515.Google Scholar
  3. 3.
    Adlercreutz P. 1985. Oxygen supply to immobilized cells. PhD Thesis for Department of Biotechnology, University of Lund, Lund, Sweden.Google Scholar
  4. 4.
    Adlercreutz P, O Holst and B Mattiasson. 1985. Characterization ofGluconobacter oxydans immobilized in calcium alginate. Appl Microbiol Biotechnol 22: 1–7.Google Scholar
  5. 5.
    Akin C. 1987. Biocatalysis with immobilized cells. Biotechnol Genet Eng Rev 5: 319–367.PubMedGoogle Scholar
  6. 6.
    Anselmo AM and JN Novais. 1992. Biological treatment of phenolic wastes: comparison between free and immobilized cell systems. Biotechnol Lett 14: 239–244.Google Scholar
  7. 7.
    Anselmo AM, M Mateus, JMS Cabral and JN Novais. 1985. Degradation of phenol by immobilized cells ofFusarium flocciferum. Biotechnol Lett 7: 889–894.Google Scholar
  8. 8.
    Arnaud JF and C Lacroix. 1991. Diffusion of lactose in κ-carrageenan/locust bean gum gel beads with or without entrapped growing lactic acid bacteria. Biotechnol Bioeng 38: 1041–1049.Google Scholar
  9. 9.
    Assaf NA and RF Turco. 1994. Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil. Biodegradation 5: 29–35.PubMedGoogle Scholar
  10. 10.
    Audet P, C Paquin and C Lacroix. 1988. Immobilized growing lactic acid bacteria with κ-carrageenan-locust bean gum gel. Appl Microbiol Biotechnol 29: 11–18.Google Scholar
  11. 11.
    Axtell RC and DR Guzman. 1987. Encapsulation of the mosquito fungal pathogenLagenidium giganteum (oomycetes: lagenidiales) in calcium alginate. J. Am Mosq Control Assoc 3: 450–459.PubMedGoogle Scholar
  12. 12.
    Babu GRV, JH Wolfram and KD Chapatwala. 1992. Conversion of sodium cyanide to carbon dioxide and ammonia by immobilized cells ofPseudomonas putida. J Ind Microbiol 9: 235–238.Google Scholar
  13. 13.
    Bailliez C, C Largeau and E Casadevall. 1985. Growth and hydrocarbon production ofBotryococcus braunii immobilized in calcium alginate gel. Appl Microbiol Biotechnol 23: 99–105.Google Scholar
  14. 14.
    Balfanz J and HJ Rehm. 1991. Biodegradation of 4-chlorophenol by adsorptive immobilizedAlcaligenes sp A 7-2 in soil. Appl Microbiol Biotechnol 35: 662–668.PubMedGoogle Scholar
  15. 15.
    Barros MRA, JMS Cabral and JM Novais. 1987. Production of ethanol by immobilizedSaccharomyces bayanus in an extractive fermentation system. Biotechnol Bioeng 29: 1097–1104.Google Scholar
  16. 16.
    Bashan Y. 1986. Alginate beads as synthetic inoculation carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51: 1089–1098.Google Scholar
  17. 17.
    Berry F, S Sayadi, M Nasri, J-N Barbotin and D Thomas. 1988. Effect of growing conditions of recombinantE. coli in carrageenan gel beads upon biomass production and plasmid stability. Biotechnol Lett 10: 619–624.Google Scholar
  18. 18.
    Bettmann H and HJ Rehm. 1984. Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol 20: 285–290.Google Scholar
  19. 19.
    Bettmann H and HJ Rehm. 1985. Continuous degradation of phenol(s) byPseudomonas putida P8 entrapped in polyacrylamidehydrazide. Appl Microbiol Biotechnol 22: 389–393.Google Scholar
  20. 20.
    Beunink J and HJ Rehm. 1990. Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl Microbiol Biotechnol 34: 108–115.PubMedGoogle Scholar
  21. 21.
    Beunink J, H Baumgartl, W Zimelka and HJ Rehm. 1989. Determination of oxygen gradients in single Ca-alginate beads by means of oxygen-microelectrodes. Experientia 45: 1041–1047.Google Scholar
  22. 22.
    Beunink J and HJ Rehm. 1988. Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl Microbiol Biotechnol 29: 72–80.Google Scholar
  23. 23.
    Briglia M, PJM Middeldorp and M Salkinoja-Salonen. 1994. Mineralization performance ofRhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating on site conditions. Soil Biol Biochem 26: 377–385.Google Scholar
  24. 24.
    Brodelius P and J Vandamme. 1987. Immobilized cell systems. In: Biotechnology: A Comprehensive Treatise in Eight Volumes. Vol 7a (Kennedy JF, ed), VCH Verlagsgesellschaft mbH, Germany.Google Scholar
  25. 25.
    Brunsbach FR and W Reineke. 1994. Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol 42: 415–420.PubMedGoogle Scholar
  26. 26.
    Bushby HVA and KC Marshall. 1977. Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. J Gen Microbiol 99: 19–27.Google Scholar
  27. 27.
    Buzas Z, K Dallmann and B Szafani. 1989. Influence of pH on the growth and ethanol production of free and immobilizedSaccharomyces cerevisiae cells. Biotechnol Bioeng 34: 882–884.Google Scholar
  28. 28.
    Casas LT, F Dominguez and E Brito. 1990. Characterization and optimization of a new immobilized system of κ-carrageenan through interaction with carob bean gum and polyols. J Ferment Bioeng 69: 98–101.Google Scholar
  29. 29.
    Cassidy MB, KT Leung, H Lee and JT Trevors. 1995. Survival oflac-lux markedPseudomonas aeruginosa UG2Lr cells encapsulated in κ-carrageenan and alginate. J Microbiol Meth 23: 281–290.Google Scholar
  30. 30.
    Casson D and AN Emery. 1987. On the elimination of artefactual effects in assessing the structure of calcium alginate cell immobilization gels. Enzyme Microb Technol 9: 102–106.Google Scholar
  31. 31.
    Caunt P. 1987. Immobilization of cells in a linear polyacrylamide matrix: degradation of a mixture of volatile fatty acids byAlcaligenes denitrificans. Biotechnol Lett 9: 47–48.Google Scholar
  32. 32.
    Caunt P and HA Chase. 1987. Degradation ofn-valeric acid by alginate-entrappedAlcaligenes denitrificans. Appl Microbiol Biotechnol 25: 453–458.Google Scholar
  33. 33.
    Champagne CP, C Gaudy, D Poncelet and RJ Neufeld. 1992.Lactococcus lactis release from calcium alginate beads. Appl Environ Microbiol 58: 1429–1434.PubMedGoogle Scholar
  34. 34.
    Chapatwala KD, GRV Babu and JH Wolfram. 1993. Screening of encapsulated microbial cells for the degradation of inorganic cyanides. J Ind Microbiol 11: 69–72.Google Scholar
  35. 35.
    Cheetham PSJ, KW Blunt and C Bucke. 1979. Physical studies on cell immobilization using calcium alginate gels. Biotechnol Bioeng 21: 2155–2168.Google Scholar
  36. 36.
    Chen KC and CT Huang. 1988. Effects of the growth ofTrichosporon cutaneum in calcium alginate gel beads upon bead structure and oxygen transfer characteristics. Enzyme Microbiol Technol 10: 284–292.Google Scholar
  37. 37.
    Chevalier P and J de la Noue. 1985. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microbiol Technol 7: 621–624.Google Scholar
  38. 38.
    Connick WJ. 1982. Controlled release of the herbicides 2,4-D and dichlobenil from alginate gels. J Appl Poly Sci 27: 3341–3348.Google Scholar
  39. 39.
    Coughlan MP and MPJ Kierstan. 1988. Preparation and applications of immobilized microorganisms: a survey of recent reports. J Microbiol Meth 8: 51–90.Google Scholar
  40. 40.
    Crawford RL and WW Mohn. 1985. Microbiological removal of pentachlorophenol from soil using aFlavobacterium. Enzyme Microbiol Technol 7: 617–620.Google Scholar
  41. 41.
    Curtain CC. 1986. Understanding and avoiding ethanol inhibition. Trends Biotech 4: 110.Google Scholar
  42. 42.
    Danso SKA, SO Keya and M Alexander. 1975. Protozoa and the decline ofRhizobium populations added to soil. Can J Microbiol 21: 884–895.PubMedGoogle Scholar
  43. 43.
    Daubaras D and AM Chakrabarty. 1992. The environment, microbes and bioremediation: microbial activities modulated by the environment. Biodegradation 3: 125–135.Google Scholar
  44. 44.
    Dervakos GA and C Webb. 1991. On the merits of viable-cell immobilisation. Biotechnol Adv 9: 559–612.PubMedGoogle Scholar
  45. 45.
    Diefenbach R, H Keweloh and HJ Rehm. 1992. Fatty acid impurities in alginate influence the phenol tolerance of immobilizedEscherichia coli. Appl Microbiol Biotechnol 36: 530–534.PubMedGoogle Scholar
  46. 46.
    Dommergues YR, HG Diem and C Divies. 1979. PolyacrylamideentrappedRhizobium as an inoculant for legumes. Appl Environ Microbiol 37: 779–781.Google Scholar
  47. 47.
    Doran PM and JE Bailey. 1986. Effects of immobilization on growth, fermentation properties, and macromolecular composition ofSaccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng 28: 73–87.Google Scholar
  48. 48.
    Dwyer DF, ML Krumme, SA Boyd and JM Tiedje. 1986. Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl Environ Microbiol 52: 345–351.Google Scholar
  49. 49.
    Edgehill RU. 1994. Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recoveredArthrobacter strain ATCC 33790. Appl Microbiol Biotechnol 41: 142–148.Google Scholar
  50. 50.
    Edgehill RU and RK Finn. 1983. Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45: 1122–1125.Google Scholar
  51. 51.
    Ehrhardt HM and HJ Rehm. 1985. Phenol degradation by microorganisms adsorbed on activated carbon. Appl Microbiol Biotechnol 21: 32–36.Google Scholar
  52. 52.
    Ehrhardt HM and HJ Rehm. 1989. Semicontinuous and continuous degradation of phenol byPseudomonas putida P8 adsorbed on activated carbon. Appl Microbiol Biotechnol 30: 312–317.Google Scholar
  53. 53.
    Eikmeier H, F Westmeier and HJ Rehm. 1984. Morphological development ofAspergillus niger immobilized in Ca-alginate and κ-carrageenan. Appl Microbiol Biotechnol 19: 53–57.Google Scholar
  54. 54.
    Enfors SO and B Mattiasson. 1983. Oxygenation of processes involving immobilized cells. In: Immobilized Cells and Organelles, Vol 2 (Mattiasson B, ed), pp 41–60, CRC Press, Boca Raton, FL, USA.Google Scholar
  55. 55.
    England LS, H Lee and JT Trevors. 1993. Bacterial survival in soil: effect of clays and protozoa. Soil Biol Biochem 25: 525–531.Google Scholar
  56. 56.
    Ernst C and H-J Rehm. 1995. Development of a continuous system for the degradation of a cyanuric acid by adsorbedPseudomonas sp NRRL B-12228. Appl Microbiol Biotechnol 43: 150–155.PubMedGoogle Scholar
  57. 57.
    Fages J 1990. An optimized process for manufacturing an Azospirillum inoculant for crops Appl Microbiol Biotechnol 32: 473–478.Google Scholar
  58. 58.
    Ferschl A, M Loidl, G Ditzelmuller, C Hinteregger and F, Streichsbier. 1991. Continuous degradation of 3-chloroaniline by calciumalginate-entrapped cells ofPseudomonas acidovorans CA28: influence of additional substrates. Appl Microbiol Biotechnol 35: 544–550.Google Scholar
  59. 59.
    Fett WF, SF Osman, L Fishman and TS Siebles III. 1986. Alginate production by plant-pathogenic pseudomonads. Appl Environ Microbiol 52: 466–473.Google Scholar
  60. 60.
    Fett WF and C Wijey. 1995. Yields of alginates produced by fluorescent pseudomonads in batch culture. J Ind Microbiol 14: 412–415.Google Scholar
  61. 61.
    Fravel DR, JJ Marois, RD Lumsden and WJ Connick Jr. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75: 774–777.Google Scholar
  62. 62.
    Fry IV and RJ Mehlhorn. 1994. Polyurethane and alginate-immobilized algal biomass for the removal of aqueous toxic metals. In: Emerging Technology for Bioremediation of Metals (Means JL and RE Hinchee, eds), pp 130–134, CRC Press, Florida, USA.Google Scholar
  63. 63.
    Furui M and K Yamashita. 1985. Diffusion coefficients of solutes in immobilized cell catalysts. J Ferment Technol 63: 167–185.Google Scholar
  64. 64.
    Gadkari D. 1990. Nitrification in the presence of soil particles, sand, alginate beads and agar strands. Soil Biol Biochem 22: 17–21.Google Scholar
  65. 65.
    Galazzo JL and JE Bailey. 1990. GrowingSaccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol Bioeng 36: 417–426.Google Scholar
  66. 66.
    Gianfreda L, P Parascandola and V Scardi. 1980. A new method of whole microbiol cell immobilization. Appl Microbiol Biotechnol 11: 6–7.Google Scholar
  67. 67.
    Gilson DD, A Thomas and FR Hawkes. 1990. Gelling mechanism of alginate beads with and without immobilized yeast. Proc Biochem 25: 104–108.Google Scholar
  68. 68.
    Goldstein RM, LM Mallory and M Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50: 977–983.PubMedGoogle Scholar
  69. 69.
    Gosmann B and HJ Rehm. 1988. Influence of growth behaviour and physiology of alginate-entrapped microorganisms on the oxygen consumption. Appl Microbiol Biotechnol 29: 554–559.Google Scholar
  70. 70.
    Gosmann B and HJ Rehm. 1986. Oxygen uptake of microorganisms entrapped in Ca-alginate. Appl Microbiol Biotechnol 23: 163–167.Google Scholar
  71. 71.
    Guiseley KB. 1989. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme Microbiol Technol 11: 706–716.Google Scholar
  72. 72.
    Habte M and M Alexander. 1977. Further evidence for the regulation of bacterial population in soil by protozoa. Arch Microbiol 13: 181–183.Google Scholar
  73. 73.
    Hackel U, J Klein, R Megnet and F Wagner. 1975. Immobilization of microbial cells in polymeric matrices. Appl Microbiol Biotechnol 1: 291–293.Google Scholar
  74. 74.
    Hahn-Hagerdal B. 1989. Physiological aspects of immobilized cells: a general overview. In: Physiology of Immobilized Cells (Bont JAM, J Visser, B Mattiasson and J Tramper, eds), pp 481–486. Elsevier Science Publishers, Amsterdam, The Netherlands.Google Scholar
  75. 75.
    Hallas LE, WJ Adams and MA Heitkamp. 1992. Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effuent. Appl Environ Microbiol 58: 1215–1219.PubMedGoogle Scholar
  76. 76.
    Hannoun BJM and G Stephanopoulos. 1986. Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnol Bioeng 28: 829–835.Google Scholar
  77. 77.
    Hattori T and R Hattori. 1976. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit Rev Microbiol 4: 423–461.PubMedGoogle Scholar
  78. 78.
    Heijnen CE, JD van Elsas, PJ Kuikman and JA van Veen. 1988. Dynamics ofRhizobium leguminosarum biovartrifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol Biochem 20: 483–488.Google Scholar
  79. 79.
    Heijnen CE, CH Hok-A-Hin and JA van Veen. 1992. Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24: 533–538.Google Scholar
  80. 80.
    Heijnen CE and JA van Veen. 1990. A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiol Ecol 85: 73–80.Google Scholar
  81. 81.
    Heinze U and HJ Rehm. 1993. Biodegradation of dichloroacetic acid by entrapped and adsorptive immobilizedXanthobacter autotrophicus GJ10. Appl Microbiol Biotechnol 40: 158–164.Google Scholar
  82. 82.
    Heitkamp MA, V Camel, TJ Reuter and WJ Adams. 1990. Biodegradation ofp-nitrophenol in an aqueous waste stream by immobilized bacteria. Appl Environ Microbiol 56: 2967–2973.PubMedGoogle Scholar
  83. 83.
    Hekman WE, CE Heijnen, JT Trevors and JD Van Elsas. 1994. Water flow induced transport ofPseudomonas fluorescens cells through soil columns as affected by inoculant treatment. FEMS Microbiol Ecol 13: 313–324.Google Scholar
  84. 84.
    Hickey WJ, DB Searles and DD Focht. 1993. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl Environ Microbiol 59: 1194–1200.PubMedGoogle Scholar
  85. 85.
    Holcberg IB and P Margalith. 1981. Alcoholic fermentation by immobilized yeast at high sugar concentration. Eur J Appl Microbiol Biotechnol 13: 133–140.Google Scholar
  86. 86.
    Hooijmans CM, CA Briasco, J Huang, BGM Geraats, J-N Barbotin, D Thomas and KChAM Luyben. 1990. Measurement of oxygen concentration gradients in gel-immobilized recombinantEscherichia coli. Appl Microbiol Biotechnol 33: 611–618.PubMedGoogle Scholar
  87. 87.
    Hu Z-C, RA Korus and KE Stormo. 1993. Characterization of immobilized enzymes in polyurethane foams in a dynamic bed reactor. Appl Microbiol Biotechnol 39: 289–295.PubMedGoogle Scholar
  88. 88.
    Hu Z-C, RA Korus, WE Levinson and RL Crawford. 1994. Adsorption and biodegradation of pentachlorophenol by polyurethane-immobilizedFlavobacterium. Environ Sci Technol 28: 491–496.Google Scholar
  89. 89.
    Huang J, CM Hooijmans, CA Briasco, BGM Geraats, KChAM Luyben, D Thomas and J-N Barbotin. 1990. Effect of free-cell growth parameters on oxygen concentration profiles in gel-immobilized recombinantEscherichia coli. Appl Microbiol Biotechnol 33: 619–623.PubMedGoogle Scholar
  90. 90.
    Hulst AC, J Tramper, K van't Riet and JMM Westerbeek. 1985. A new technique for the production of immobilized biocatalyst in large quantities. Biotechnol Bioeng 27: 870–876.Google Scholar
  91. 91.
    Hunik JH and J Tramper. 1993. Large-scale production of κ-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate. Biotechnol Prog 9: 186–192.PubMedGoogle Scholar
  92. 92.
    Hunik JH, MP van den Hoogen, W de Boer, M Smit and J Tramper. 1993. Quantitative determination of the spatial distribution ofNitrosomonas europaea andNitrobacter agilis cells immobilized in κ-carrageenan gel beads by a specific fluorescent-antibody labelling technique. Appl Environ Microbiol 59: 1951–1954.Google Scholar
  93. 93.
    Jackman SC, H Lee and JT Trevors. 1992. Survival, detection and containment of bacteria. Microb Rel 1: 125–154.Google Scholar
  94. 94.
    Jacobsen CS and JC Pedersen. 1992. Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in soil inoculated withPseudomonas cepacia DBO1 (pRO101),Alcaligenes eutrophus AEO106 (pRO101) andAlcaligenes eutrophus JMP134(pJP4): effects of inoculation level and substrate concentration. Biodegradation 2: 253–263.Google Scholar
  95. 95.
    Jung G, J Mugnier, HG Diem and YR Dommergues. 1982. Polymerentrapped rhizobium as an inoculant for legumes. Plant and Soil 65: 219–231.Google Scholar
  96. 96.
    Kanasawud P, S Hjorleifsdottir, O Holst and B Mattiasson. 1989. Studies on immobilization of the thermophilic bacteriumThermus aquaticus YT-1 by entrapment in various matrices. Appl Microbiol Biotechnol 31: 228–233.Google Scholar
  97. 97.
    Karel ST and CR Robertson. 1989. Autoradiographic determination of mass-transfer limitations in immobilized cell reactors. Biotechnol Bioeng 34: 320–336.Google Scholar
  98. 98.
    Karsten G and H Simon. 1993. Immobilization ofProteus vulgaris for the reduction of 2-oxo acids with hydrogen gas or formate to D-2-hydroxy acids. Appl Microbiol Biotechnol 38: 441–446.Google Scholar
  99. 99.
    Kearney L, M Upton and A McLoughlin. 1990. Enhancing the viability ofLactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incroporating cryoprotectants Appl Environ Microbiol 56: 3112–3116.Google Scholar
  100. 100.
    Keweloh H, HJ Heipieper and HJ Rehm. 1989. Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31: 383–389.Google Scholar
  101. 101.
    Keweloh H, G Weyrauch and HJ Rehm. 1990. Phenol-induced membrane changes in free and immobilizedE. coli. Appl Microbiol Biotechnol 33: 66–71.PubMedGoogle Scholar
  102. 102.
    Kilbane JJ, DK Chatterjee and AM Chakrabarty. 1983. Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil byPseudomonas cepacia. Appl Environ Microbiol 45: 1697–1700.PubMedGoogle Scholar
  103. 103.
    Klein J and KD Vorlop. 1985a. Immobilization of whole cells. In: Biotechnology Focus. 1 Fundamentals, Applications, Information (Finn RK, P Prave, M Schlingmenn, W Crueger, K Esser, R Thauer and F Wagner, eds), Hanser Publishers, New York, USA.Google Scholar
  104. 104.
    Klein J and KD Vorlop. 1985b. Immobilization techniques-cells. In: Comprehensive Biotechnology Vol 2. The Principles of Biotechnology: Engineering Considerations (Moo-Young M, CL Cooney and AE Humphrey, eds), Pergamon Press, Oxford, UK.Google Scholar
  105. 105.
    Klein J and KD Vorlop. 1984. Kinetic aspects of process development for penicillin G cleavage with immobilized cell biocatalysis. German Chem Eng 7: 233–240.Google Scholar
  106. 106.
    Klein J and F Wagner. 1983. Methods for the immobilization of microbial cells. In: Applied Biochemistry and Bioengineering Volume 4: Immobilized Microbial Cells (Chibata I and LB Wingard Jr. eds), Academic Press, NY, USA.Google Scholar
  107. 107.
    Kolot FB. 1988. Immobilized Microbial Systems: Principles, Techniques, and Industrial Applications. Robert E Krieger Publishing Co, Malabar, Florida, USA.Google Scholar
  108. 108.
    Kolot FB. 1981. Microbial carriers—strategy for selection. Proc Biochem 5: 2–9.Google Scholar
  109. 109.
    Kren V, J Ludvik, O Kofronova, J Kozova and Z Rehacek, 1987. Physiological activity of immobilised cells ofClaviceps fusiformis during long-term semicontinuous cultivation. Appl Microbiol Biotechnol 26: 219–226.Google Scholar
  110. 110.
    Kuek C and TM Armitage. 1985. Scanning electron microscopic examination of calcium alginate beads immobilizing growing mycelia ofAspergillus phoenicus. Enzyme Microb Technol 7: 121–125.Google Scholar
  111. 111.
    Kumar PKR and K Schugerl. 1990. Immobilization of genetically engineered cells: a new strategy for higher stability. J Biotechnol 14: 255–272.PubMedGoogle Scholar
  112. 112.
    Lamar RT and DM Dietrich. 1990.In situ depletion of pentachlorophenol from contaminated soil byPhanerochaete spp. Appl Environ Microbiol 56: 3093–3100.Google Scholar
  113. 113.
    Lamar RT, MW Davis, DM Dietrich and JA Glaser. 1994. Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungusPhanerochaete sordida: a field demonstration. Soil Biol Biochem 26: 1603–1611.Google Scholar
  114. 114.
    Lancy ED and OH Tuovinen. 1984. Ferrous ion oxidation byThiobacillus ferrooxidans immobilized in calcium alginate. Appl Microbiol Biotechnol 20: 94–99.Google Scholar
  115. 115.
    Lee CM, CJ Lu and MS Chuang. 1994. Effects of immobilized cells on the biodegradation of chlorinated phenols. Water Sci Technol 30: 87–90.Google Scholar
  116. 116.
    Lee ST, SK Rhee and GM Lee. 1994. Biodegradation of pyridine by freely suspended and immobilizedPimelobacter sp. Appl Microbiol Biotechnol 41: 652–657.Google Scholar
  117. 117.
    Lefebvre J and J-C Vincent. 1995. Diffusion-reaction-growth coupling in gel-immobilized cell systems: model and experiment. Enzyme Microb Technol 17: 276–284.Google Scholar
  118. 118.
    Le Tacon F, G Jung, J Mugnier, P Michelot and C Mauperin. 1985. Efficiency in a forest nursery of an ectomycorrhizal fungus inoculum produced in a fermenter and entrapped in polymeric gels. Can J Bot 63: 1664–1668.Google Scholar
  119. 119.
    Leung K, MB Cassidy, S Holmes, H Lee and JT Trevors, 1994. Detection of κ-carrageenan-encapsulatedPseudomonas aeruginosa UG2Lr by polymerase chain reaction (PCR) and non-selective plating in a forest soil. FEMS Microbiol Ecol 16: 71–82.Google Scholar
  120. 120.
    Lievense LC and K van't Riet. 1993. Convective drying of bacteria. II. Factors influencing survival. Adv Biochem Eng/Biotechnol 50: 71–89.Google Scholar
  121. 121.
    Lin JE, HY Wang and RF Hickey. 1991. Use of coimmobilized biological systems to degrade toxic organic compounds. Biotechnol Bioeng 38: 273–279.Google Scholar
  122. 122.
    Lin JE and HY Wang. 1991. Degradation of pentachlorophenol by non-immobilized, immobilized and co-immobilizedArthrobacter cells. J Ferment Bioeng 72: 311–314.Google Scholar
  123. 123.
    Mahmoud W and HJ Rehm. 1986. Morphological examination of immobilizedStreptomyces aureofaciens during chlortetracycline fermentation. Appl Microbiol Biotechnol 23: 305–310.Google Scholar
  124. 124.
    Marcipar A, N Cochet, L Brackenridge and JM Lebeault. 1979. Immobilization of yeasts on ceramic supports. Biotechnol Lett 1: 65–70.Google Scholar
  125. 125.
    Marin-Iniesta F, M Nasri, P Dhulster, J-N Barbotin and D Thomas. 1988. Influence of oxygen supply on the stability of recombinant plasmid pTG201 in immobilizedE. coli cells. Appl Microbiol Biotechnol 28: 455–462.Google Scholar
  126. 126.
    Marshall KC. 1971. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68: 290–295.Google Scholar
  127. 127.
    Marshall KC and FJ Rogers. 1963. Influence of fine particle material on survival ofRhizobium trifolii in sandy soil. Nature 198: 410–412.Google Scholar
  128. 128.
    Marshall KC. 1968. Interaction between colloidal montmorillonite and cells ofRhizobium species with different ionogenic surfaces. Biochim Biophys Acta 156: 179–184.PubMedGoogle Scholar
  129. 129.
    Martinsen A, I Storro and G Skjak-Braek. 1992. Alginate as immobilization material: III diffusional properties. Biotechnol Bioeng 39: 186–194.Google Scholar
  130. 130.
    Marvin-Sikkema FD and JAM de Bont. 1994. Degradation of nitroaromatic compounds by microorganisms. Appl Microbiol Biotechnol 42: 499–507.PubMedGoogle Scholar
  131. 131.
    Mattiasson B. 1983a. Immobilization methods. In: Immobilized Cells and Organelles. Vol I (Mattiasson B, ed), pp 3–25, CRC Press, Boca Raton, FL, USA.Google Scholar
  132. 132.
    Mattiasson, B. 1983b. Immobilized viable cells. In: Immobilized Cells and Organelles, Vol II (Mattiasson B, ed), pp 23–40, CRC Press, Boca Raton, FL, USA.Google Scholar
  133. 133.
    McLoughlin AJ. 1994. Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. Adv Biochem Eng/Biotechnol 51: 1–45.Google Scholar
  134. 134.
    Meusel M and HJ Rehm. 1993. Biodegradation of dichloroacetic acid by freely suspended and adsorptive immobilizedXanthobacter autotrophicus GJ10 in soil. Appl Microbiol Biotechnol 40: 165–171.Google Scholar
  135. 135.
    Middeldorp PJM, M Briglia and MS Salkinoja-Salonen. 1990. Biodegradation of pentachlorophenol in natural soil by inoculatedRhodococcus chlorophenolicus. Microb Ecol 20: 123–139.Google Scholar
  136. 136.
    Monbouquette HG and DF Ollis. 1988. Scanning microfluorimetry of Ca-alginate immobilizedZymomonas mobilis. Bio/Technology 6: 1077–1079.Google Scholar
  137. 137.
    Mörsen A and HJ Rehm. 1987. Degradation of phenol by a mixed culture ofPseudomonas putida andCryptococcus elinovii adsorbed on activated carbon. Appl Microbiol Biotechnol 26: 283–288.Google Scholar
  138. 138.
    Mosbach K (ed). 1987a. Immobilized enzymes and cells. Part B. Methods in Enzymology. Vol 135. Academic Press, London, UK.Google Scholar
  139. 139.
    Mosbach K (ed). 1987b. Immobilized enzymes and cells. Part C. Methods in Enzymology. Vol 136. Academic Press, London, UK.Google Scholar
  140. 140.
    Mosbach K (ed). 1987c. Immobilized enzymes and cells. Part D. Methods in Enzymology. Vol 137. Academic Press, London, UK.Google Scholar
  141. 141.
    Mugnier J and G Jung. 1985. Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl Environ Microbiol 50: 108–114.Google Scholar
  142. 142.
    Muhr AH and JMV Blanshard. 1982. Diffusion in gels. Polymer 23: 1012–1026.Google Scholar
  143. 143.
    Muller W, A Winnefeld, O Kohls, T Scheper, W Zimelka and H Baumgartl. 1994. Real and pseudo oxygen gradients in Ca-alginate beads monitored during polargraphic Po2-measurements using Pt-needle microelectrodes. Biotechnol Bioeng 44: 617–625.Google Scholar
  144. 144.
    Musgrave SC, NW Kerby, GA Codd and WDP Stewart. 1983. Structural features of calcium alginate entrapped cyanobacteria modified for ammonia production. Eur J Appl Microbiol Biotechnol 17: 133–136.Google Scholar
  145. 145.
    Nasri M, S Sayadi, J-N Barbotin, P Dhulster and D Thomas. 1987a. Influence of immobilization on the stability of pTG201 recombinant plasmid in some strains ofEscherichia coli. Appl Environ Microbiol 53: 740–744.PubMedGoogle Scholar
  146. 146.
    Nasri M, S Sayadi, J-N Barbotin and D Thomas. 1987b. The use of the immobilization of whole living cells to increase stability of recombinant plasmids inEscherichia coli. J Biotechnol 6: 147–157.Google Scholar
  147. 147.
    Nava Saucedo JE, B Audras, S Jan, CE Bazinet and J-N Barbotin. 1994. Factors affecting densities, distribution and growth patterns of cells inside immobilization supports. FEMS Microbiol Rev 14: 93–98.Google Scholar
  148. 148.
    Nawaz MS, W Franklin and CE Cerniglia. 1992. Degradation of acrylamide by immobilized cells of aPseudomonas sp andXanthomonas maltophilia. Can J Microbiol 39: 207–212.Google Scholar
  149. 149.
    Nguyen AL and JHT Luong. 1986 Diffusion in κ-carrageenan gel beads. Biotechnol Bioeng 28: 1261–1267.Google Scholar
  150. 150.
    Norton S, K Watson and T D'Amore. 1995. Ethanol tolerance of immobilized brewers' yeast cells. Appl Microbiol Biotechnol 43: 18–24.PubMedGoogle Scholar
  151. 151.
    Nunez MJ and JM Lema. 1987. Cell immobilization: application to alcohol production. Enzyme Microbiol Technol 9: 642–651.Google Scholar
  152. 152.
    O'Reilly AM and JA Scott. 1995. Defined coimmobilization of mixed microorganism cultures. Enzyme Microb Technol 17: 636–646.Google Scholar
  153. 153.
    O'Reilly KT, R Kadakia, RA Korus and RL Crawford. 1988. Utilization of immobilized-bacteria to degrade aromatic compounds common to wood-treatment wastewaters. Water Sci Technol 20: 95–100.Google Scholar
  154. 154.
    O'Reilly KT and RL Crawford. 1989a. Degradation of pentachlorophenol by polyurethane-immobilizedFlavobacterium cells. Appl Environ Microbiol 55: 2113–2118.PubMedGoogle Scholar
  155. 155.
    O'Reilly KT and RL Crawford. 1989b. Kinetics ofp-cresol degradation by an immobilizedPseudomonas sp. Appl Environ Microbiol 55: 866–870.PubMedGoogle Scholar
  156. 156.
    Ogbonna JC, M Matsumura and H Kataoka. 1991. Effective oxygenation of immobilized cells through reduction in bead diameters: a review. Proc Biochem 26: 109–121.Google Scholar
  157. 157.
    Ogbonna JC, M Matsumura, T Yamagata, H Sakuma and H Kataoka. 1989. Production of micro-gel beads by a rotating disk atomizer. J Ferm Bioeng 68: 40–48.Google Scholar
  158. 158.
    Omar SH. 1993a. Oxygen diffusion through gels employed for immobilization. 1. In the absence of microorganisms. Appl Microbiol Biotechnol 40: 1–6.Google Scholar
  159. 159.
    Omar SH. 1993b. Oxygen diffusion through gels employed for immobilization. 2. In the presence of microorganisms. Appl Microbiol Biotechnol 40: 173–181.Google Scholar
  160. 160.
    Omar SH and HJ Rehm. 1988. Degradation ofn-alkanes byCandida parapsilosis andPenicillium frequentans immobilized on granular clay and aquifer sand. Appl Microbiol Biotechnol 28: 103–108.Google Scholar
  161. 161.
    Omar SH, U Budecker and HJ Rehm. 1990. Degradation of oily sludge from a flotation unit by free and immobilized microorganisms. Appl Microbiol Biotechnol 34: 259–263.Google Scholar
  162. 162.
    Overmeyer C and H-J Rehm. 1995. Biodegradation of 2-chloroethanol by freely suspended and adsorbed immobilizedPseudomonas putida US2 in soil. Appl Microbiol Biotechnol 43: 143–149.PubMedGoogle Scholar
  163. 163.
    Paul E, J Fages, P Blanc, G Goma and A Pareilleux. 1993. Survival of alginate-entrapped cells ofAzospirillum lipoferum during rehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40: 34–39.Google Scholar
  164. 164.
    Pertot E, D Rozman, S Milicic and H Socic. 1988. Morphological differentiation of immobilizedClaviceps paspali mycelium during semi-continuous cultivation. Appl Microbiol Biotechnol 28: 209–231.Google Scholar
  165. 165.
    Pidoux M, MF Pilet and V Ripoche. 1992. Growth performances ofLactobacillus hilgardii immobilized in dextran gel and in continuous fermentation. World J Microbiol Biotechnol 8: 393–398.Google Scholar
  166. 166.
    Pilar Pons M and M Carmen Fuste. 1993. Uranium uptake by immobilized cells ofPseudomonas strain EPS 5028. Appl Microbiol Biotechnol 39: 661–665.Google Scholar
  167. 167.
    Poncelet D, B Bugarski, BG Amsden, J Zhu, R Neufeld and MFA Goosen. 1994. A parallel plate electrostatic droplet generator: parameters affecting microbead size. Appl Microbiol Biotechnol 42: 251–255.Google Scholar
  168. 168.
    Portier RJ and K Fujisaki. 1986. Continuous biodegradation and detoxification of chlorinated phenols using immobilized bacteria. Toxicity Assessment 1: 501–513.Google Scholar
  169. 169.
    Providenti MA, H Lee and JT Trevors. 1993. Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol 12: 379–395.Google Scholar
  170. 170.
    Radehaus PM and SK Schmidt. 1992. Characterization of a novelPseudomonas sp that mineralizes high concentrations of pentachlorophenol. Appl Environ Microbiol 58: 2879–2885.PubMedGoogle Scholar
  171. 171.
    Rattray EAS, JI Prosser, LA Glover and K Killham. 1992. Matric potential in relation to survival and activity of a genetically modified microbial inoculum in soil. Soil Biol Biochem 24: 421–425.Google Scholar
  172. 172.
    Rehm H-J and SH Omar. 1993. Special morphological and metabolic behaviour of immobilized microorganisms. In: Biotechnology. Volume 1. Biological Fundamentals (Sahm H, ed), pp 223–248, VCH Verlagsgesellschaft mbH, Weinheim, FRG.Google Scholar
  173. 173.
    Rhodes DJ. 1993. Formulation of biological control agents. In: Exploitation of Microorganisms (Jones DG, ed), pp 411–439, Chapman and Hall, London, UK.Google Scholar
  174. 174.
    Saber DL and RL Crawford. 1985. Isolation and characterization ofFlavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50: 1512–1518.PubMedGoogle Scholar
  175. 175.
    Sahasrabudhe SR, AJ Modi and VV Modi. 1988. Dehalogenation of 3-chlorobenzoate by immobilizedPseudomonas sp B13 cells. Biotechnol Bioeng 31: 889–893.Google Scholar
  176. 176.
    Salkinoja-Salonen MS, PJM Middeldorp, M Briglia, R Valo, M Haggblom and A McBain. 1989. Clean up of old industrial sites. In: Advances in Applied Biotechnology Vol 4 (Kamely D, A Chakrabarty and G Omenn, eds), pp 344–367, Gulf Publishing Company, Houston, TX, USA.Google Scholar
  177. 177.
    Sayadi S, M Nasri, F Berry, J-N Barbotin and D Thomas. 1987. Effect of temperature on the stability of plasmid pTG201 and productivity ofxylE gene product in recombinantEscherichia coli: development of a two-stage chemostat with free and immobilized cells. J Gen Microbiol 133: 1901–1908.PubMedGoogle Scholar
  178. 178.
    Scherer P, M Kluge, J Klein and H Sahm. 1981. Immobilization of the methanogenic bacteriumMethodsanosarcina barkeri. Biotechnol Bioeng 23: 1057–1065.Google Scholar
  179. 179.
    Scott RI, SJ Wills and C Bucke. 1987. Oxygen uptake by κ-carrageenan entrappedStreptomyces clavuligerus. Enzyme Microbiol Technol 10: 151–155.Google Scholar
  180. 180.
    Scott CD. 1987. Immobilized cells: a review of recent literature. Enzyme Microb Technol 9: 66–73.Google Scholar
  181. 181.
    Scott CD, CA Woodward and JE Thompson. 1989. Solute diffusion in biocatalyst gel beads containing biocatalysts and other additives. Enzyme Microbiol Technol 11: 258–263.Google Scholar
  182. 182.
    Seech AG, JT Trevors and TL Bulman. 1991. Biodegradation of pentachlorophenol in soil: the response to physical, chemical, and biological treatments. Can J Microbiol 37: 440–444.PubMedGoogle Scholar
  183. 183.
    Shieh WK, JA Puhakka, E Melin and T Tuhkanen. 1990. Immobilized-cell degradation of chlorophenols. J Environ Eng 116: 683–697.Google Scholar
  184. 184.
    Shirai Y, K Hashimoto, H Yamaji and H Kawahara. 1988. Oxygen uptake rate of immobilized growing hybridoma cells. Appl Microbiol Biotechnol 29: 113–118.Google Scholar
  185. 185.
    Shreve GS and TM Vogel. 1993. Comparison of substrate utilization and growth kinetics between immobilized and suspendedPseudomonas cells. Biotechnol Bioeng 41: 370–379.Google Scholar
  186. 186.
    Siahpush AR, JE Lin and HY Wang. 1991. Effect of adsorbents on degradation of toxic organic compounds by coimmobilized systems. Biotechnol Bioeng 39: 619–628.Google Scholar
  187. 187.
    Smidsrod O and G Skjak-Braek. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol 8: 71–78.PubMedGoogle Scholar
  188. 188.
    Smit E, H Lee, JT Trevors and JD Van Elsas. 1996. Interaction between a genetically engineeredPseudomonas fluorescens and bacteriophage ΦR2f in soil: effect of nutrients, alginate encapsulation and rhizosphere. Microb Ecol (in press).Google Scholar
  189. 189.
    Smith MR, A de Haan and JAM de Bont. 1993. The effect of calcium alginate entrapment on the physiology ofMycobacterium sp strain E3. Appl Microbiol Biotechnol 38: 642–648.Google Scholar
  190. 190.
    Sparrow SD and GE Ham. 1983. Survival ofRhizobium phaseoli in six carrier materials. Agron J 75: 181–184.Google Scholar
  191. 191.
    Speitel Jr GE, C-J Lu, M Turakhia and X-J Zhu. 1989. Biodegradation of trace concentration of substituted phenols in granular activated carbon columns. Environ Sci Technol 23: 68–74.Google Scholar
  192. 192.
    Stewart PS and CR Robertson. 1989. Microbial growth in a fixed volume: studies with entrappedEscherichia coli. Appl Microbiol Biotechnol 30: 34–40.Google Scholar
  193. 193.
    Stormo KE and RL Crawford. 1994. Pentachlorophenol degradation by microencapsulated flavobacteria and their enhanced survival forin situ aquifer bioremediation. In: Applied Biotechnology for Site Remediation (Hinchee RE, DB Anderson, SB Metting and GD Sayler, eds), pp 422–427, Lewis Publishers, Ann Arbor, MI.Google Scholar
  194. 194.
    Stormo KE and RL Crawford. 1992. Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol 58: 727–730.Google Scholar
  195. 195.
    Stotzky G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Interactions of Soil Minerals with Natural Organics and Microbes. pp 305–428, Soil Science Society of America Special Publication No 17, Madison, WI, USA.Google Scholar
  196. 196.
    Strullu DG and C Plenchette. 1991. The entrapment ofGlomus sp in alginate beads and their use in inoculum. Mycol Res 95: 1194–1196.Google Scholar
  197. 197.
    Sun Y, S Furusaki, A Yamauchi and K Ichimura. 1989. Diffusivity of oxygen into carriers entrapping whole cells. Biotechnol Bioeng 34: 55–58.Google Scholar
  198. 198.
    Tampion J and MD Tampion. 1987. Immobilized Cells: Principles and Applications. Cambridge University Press, Cambridge, UK.Google Scholar
  199. 199.
    Tanaka A and H Nakajima. 1990. Application of immobilized growing cells. Adv Biochem Eng/Biotechnol 42: 97–131.Google Scholar
  200. 200.
    Tanaka H, M Matsumura and IA Veliky. 1984. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26: 53–58.Google Scholar
  201. 201.
    Thomas ORT and GF White. 1990. Immobilization of the surfactant-degrading bacteriumPseudomonas C12B in polyacrylamide gel beads: I. Effect of immobilization on the primary and ultimate biodegradation of SDS, and redistribution of bacteria within beads during use. Enzyme Microbiol Technol 12: 697–705.Google Scholar
  202. 202.
    Thomas ORT and GF White. 1991. Immobilization of the surfactant-degrading bacteriumPseudomonas C12B in polyacrylamide gel. III. Biodegradation specificity for raw surfactants and industrial wastes. Enzyme Microbiol Technol 13: 338–343.Google Scholar
  203. 203.
    Tosa T, T Sato, T Mori, K Yamamoto, I Takata, Y Nishida and I Chibata. 1979. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioeng 21: 1697–1709.PubMedGoogle Scholar
  204. 204.
    Tramper J, KChAM Luyben and WJJ van den Tweel. 1983. Kinetic aspects of glucose oxidation byGluconobacter oxydans cells immobilized in ca-alginate. Eur J Appl Microbiol 17: 13–18.Google Scholar
  205. 205.
    Trevors JT. 1991. Respiratory activity of alginate-encapsulatedPseudomonas fluorescens cells introduced into soil. J Microbiol Meth 14: 11–20.Google Scholar
  206. 206.
    Trevors JT, JD Van Elsas, H Lee and AC Wolters. 1993. Survival of alginate encapsulatedPseudomonas fluorescens cells in soil. Appl Microbiol Biotechnol 39: 637–643.Google Scholar
  207. 207.
    Trevors JT, JD Van Elsas, H Lee and LS Van Overbeek. 1992. Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Rel 1: 61–69.Google Scholar
  208. 208.
    Trevors JT, JD Van Elsas, LS Van Overbeek and ME Starodub. 1990. Transport of a genetically engineeredPseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol 56: 401–408.PubMedGoogle Scholar
  209. 209.
    Valo RJ, MH Haggblom and M Salkinoja-Salonen. 1990. Bioremediation of chlorophenol containing simulated groundwater by immobilized bacteria. Wat Res 24: 253–258.Google Scholar
  210. 210.
    Valo R and M Salkinoja-Salonen. 1986. Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25: 68–75.Google Scholar
  211. 211.
    Van Elsas JD, JT Trevors, D Jain, AC Wolters, CE Heijnen and LS Van Overbeek. 1992. Survival of, and root colonization by, alginate-encapsulatedPseudomonas fluorescens cells following introduction into soil. Biol Fertil Soils 14: 14–22.Google Scholar
  212. 212.
    Van Elsas JD and CE Heijnen. 1990. Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10: 127–133.Google Scholar
  213. 213.
    Van Elsas JD, AF Dijkstra, JM Govaert and JA Van Veen. 1986. Survival ofPseudomonas fluorescens andBacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38: 151–160.Google Scholar
  214. 214.
    Van Loosdrecht MCM, J Lyklema, W Norde and AJB Zehnder. 1990. Influence of interfaces on microbial activity. Microbiol Rev 54: 75–87.PubMedGoogle Scholar
  215. 215.
    Van Neerven ARW, RH Wijffels and AJB Zehnder. 1990. Scanning electron microscopy of immobilized bacteria in gel beads: a comparative study of fixation methods. J Microbiol Methods 11: 157–168.Google Scholar
  216. 216.
    Vargas R and T Hattori. 1986. Protozoan predation of bacterial cells in soil aggregates. FEMS Microbiol Ecol 38: 233–242.Google Scholar
  217. 217.
    Vives C, C Casas, F Godia and C Sola. 1993. Determination of the intrinsic fermentation kinetics ofSaccharomyces cerevisiae cells immobilized in ca-alginate beads and observations on their growth. Appl Microbiol Biotechnol 38: 467–472.Google Scholar
  218. 218.
    Wada M, J Kato and I Chibata. 1979. A new immobilization of microbial cells. Appl Microbiol Biotechnol 8: 241–247.Google Scholar
  219. 219.
    Walker HL and WJ Connick Jr. 1983. Sodium alginate for the production and formulation of mycoherbicides. Weed Sci 31: 333–338.Google Scholar
  220. 220.
    Weir SC, H Lee and JT Trevors. 1995a. Survival of free and alginate-encapsulatedPseudomonas aeruginosa UG2Lr in soil treated with disinfectants. J Appl Bacteriol (in press).Google Scholar
  221. 221.
    Weir SC, SP Dupuis, MA Providenti, H Lee and JT Trevors. 1995b. Nutrient-enhanced survival of and phenanthrene mineralization by alginate-encapsulated and freePseudomonas sp UG14Lr in creosote-contaminated soil slurries. Appl Microbiol Biotechnol 43: 946–951.PubMedGoogle Scholar
  222. 222.
    Wessolek G and C Fahrenhorst. 1994. Immobilization of heavy metals in a polluted soil of a sewage farm by application of a modified alumino-silicate: a laboratory and numerical displacement study. Soil Technol 7: 221–232.Google Scholar
  223. 223.
    Westmeier F and HJ Rehm. 1985. Biodegradation of 4-chlorophenol by entrappedAlcaligenes sp A 7-2. Appl Microbiol Biotechnol 22: 301–305.Google Scholar
  224. 224.
    Westmeier F and HJ Rehm. 1987. Degradation of 4-chlorophenol in municipal wastewater by adsorptive immobilizedAlcaligenes sp A 7-2. Appl Microbiol Biotechnol 26: 78–83.Google Scholar
  225. 225.
    White GF and ORT Thomas. 1990. Immobilization of the surfactant-degrading bacteriumPseudomonas C12B in polaycrylamide gel. II. Optimizing SDS-degrading activity and stability. Enzyme Microb Technol 12: 969–975.Google Scholar
  226. 226.
    Wiesel I, SM Wubker and HJ Rehm. 1993. Degradation of polycyclic aromatic hydrocarbons by an immobilized mixed bacterial culture. Appl Microbiol Biotechnol 39: 110–116.Google Scholar
  227. 227.
    Wijffels RH, GC Schukking and J Tramper. 1990. Characterization of a denitrifying bacterium immobilized in carrageenan. Appl Microbiol Biotechnol 34: 399–403.Google Scholar
  228. 228.
    Wijffels RH, AW Schepers, M Smit, CD de Gooijer and J Tramper. 1994. Effect of initial biomass concentration on the growth of immobilizedNitrosomonas europaea. Appl Microbiol Biotechnol 42: 153–157.Google Scholar
  229. 229.
    Wijffels RH, G Englund, JH Hunik, EJTM Leenen, A Bakketun, A Gunther, JM Obon de Castro and J Tramper. 1995. Effects of diffusion limitation on immobilized nitrifying microorganisms at low temperatures. Biotechnol Bioeng 45: 1–9.Google Scholar
  230. 230.
    Wijffels RH and J Tramper. 1989. Performance of growingNitrosomonas europaea cells immobilized in κ-carrageenan. Appl Microbiol Biotechnol 32: 108–112.Google Scholar
  231. 231.
    Willaert R and G Baron. 1993. Growth kinetics of gel-immobilized yeast cells studied by on-line microscopy. Appl Microbiol Biotechnol 39: 347–352.PubMedGoogle Scholar
  232. 232.
    Wong PK, KC Lam and CM So. 1993. Removal and recovery of Cu(II) from industrial effluent by immobilized cells ofPseudomonas putida II-11. Appl Microbiol Biotechnol 39: 127–131.Google Scholar
  233. 233.
    Woodward J. 1988. Methods of immobilization of microbial cells. J Microbiol Meth 8: 91–102.Google Scholar
  234. 234.
    Wu WM, L Bhatnagar and JG Zeikus. 1993. Performance of anaerobic granules for degradation of pentachlorophenol. Appl Environ Microbiol 59: 389–397.PubMedGoogle Scholar
  235. 235.
    Yang PY and TS See. 1991. Packed entrapped mixed microbial cell process for removal of phenol and its compounds. J Environ Sci Health 8: 1491–1512.Google Scholar
  236. 236.
    Zache G and HJ Rehm. 1989. Degradation of phenol by a coimmobilized entrapped mixed culture. Appl Microbiol Biotechnol 30: 426–432.Google Scholar
  237. 237.
    Zhang X, S Bury, D DiBiasio and JE Miller. 1989. Effects of immobilization on growth, substrate consumption, β-galactosidase induction, and byproduct formation inEscherichia coli. J Ind Microbiol 4: 239–246.Google Scholar
  238. 238.
    Zhou W, B Winter and W Zimmermann. 1993. Dechlorination of high-molecular-mass compounds in spent sulphite bleach effluents by free and immobilized cells of streptomycetes. Appl Microbiol Biotechnol 38: 418–423.Google Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  1. 1.Department of Environmental BiologyUniversity of GuelphGuelphCanada

Personalised recommendations