Advertisement

Journal of Industrial Microbiology

, Volume 16, Issue 3, pp 163–170 | Cite as

Secondary metabolites of the fungusMonascus: A review

  • P Jůzlová
  • L Martínková
  • V Křen
Article

Abstract

This review deals with polyketides produced by the filamentous fungusMonascus which include: 1) a group of yellow, orange and red pigments, 2) a group of antihypercholesterolemic agents including mevinolin and related compounds and 3) the newly discovered metabolite ankalactone. Biosynthesis, methods of production, isolation and biological activities of these secondary metabolites are discussed.

Keywords

Monascus pigments rubropunctatin monascorubrin rubropunctamine monascorubramine ankaflavin monascin mevinolin monacolin lovastatin ankalactone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers-Schonberg G, RL Monaghan, AW Alberts and CH Hoffman. 1981. Hypocholesterolemic fermentation products. US Patent 4342767.Google Scholar
  2. 2.
    Alberts AW. 1988. Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62: 10J-15J.PubMedGoogle Scholar
  3. 3.
    Alberts AW, J Chen, G Kuron, V Hunt, J Huff, C Hoffman, J Rothrock, M Lopez, H Joschua, E Harris, A Patchett, R Monaghan, S Curie, E Stapley, G Albers-Schonberg, O Hensons, J Hirschfield, K Hoogsteen, J Liesch and J Springer. 1980. Mevinolin: a highly-potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77: 3957–3961.PubMedGoogle Scholar
  4. 4.
    Bach TJ. 1986. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21: 82–88.PubMedGoogle Scholar
  5. 5.
    Bach TJ and HK Lichtenthaler. 1983. Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59: 50–60.Google Scholar
  6. 6.
    Bach TJ and HK Lichtenthaler. 1983. Mechanisms of inhibition by mevinolin (MK 803) of microsome-bound radish and of partially purified yeast HMG-CoA reductase (EC.1.1.1.34). Z Naturforsch 38c: 212–219.Google Scholar
  7. 7.
    Barnard EL and PF Cannon. 1987. A new species ofMonascus from pine tissues in Florida. Mycologia 79: 479–484.Google Scholar
  8. 8.
    Bau YS and HC Wong. 1979. Zinc effects on growth, pigmentation and antibacterial activity ofMonascus purpureus. Physiol Plant 46: 63–67.Google Scholar
  9. 9.
    Berajano ER and E Cerda-Olmedo. 1992. Independence of the carotene and sterol pathways ofPhycomyces. FEBS Lett 30: 209–212.Google Scholar
  10. 10.
    Blanc PJ, MO Loret and G Goma. 1995. Production of citrinin by various species ofMonascus. Biotechnol Lett 17: 291–294.Google Scholar
  11. 11.
    Blanc PJ, MO Loret, AL Santerre, A Pareilleux, D Prome, JC Prome, JP Laussac and G Goma. 1994. Pigments ofMonascus. J Food Sci 59: 862–865.Google Scholar
  12. 12.
    Bridge PD and DL Hawksworth. 1985. Biochemical tests as an aid to the identification ofMonascus species. Lett Appl Microbiol 1: 25–29.Google Scholar
  13. 13.
    Broder CU and PE Koehler. 1980. Pigments produced byMonascus purpureus with regard to quality and quantity. J Food Sci 45: 567–569.Google Scholar
  14. 14.
    Carels M and D Shepherd. 1977. The effect of different nitrogen sources on pigment production and sporulation ofMonascus species in submerged, shaken culture. Can J Microbiol 23: 1360–1372.PubMedGoogle Scholar
  15. 15.
    Carels M and D Shepherd. 1978. The effect of pH and amino acids on conidiation and pigment production ofMonascus major ATCC 16362 andMonascus rubiginosus ATCC 16367 in submerged shaken culture. Can J Microbiol 24: 1346–1357.PubMedGoogle Scholar
  16. 16.
    Chan JK, RN Moore, TT Nakashima and JC Vederas. 1983. Biosynthesis of mevinolin (spectral assignment by double-quantum coherence NMR after high carbon-13 incorporation). J Am Chem Soc 105: 3334–3335.Google Scholar
  17. 17.
    Chen FC, PS Manchard and WB Whalley. 1973. The chemistry of fungi. Part LXIV. The structure of monascin, the relative stereochemistry of azaphilones. J Chem Soc (C) 3577–3579.Google Scholar
  18. 18.
    Chen MH and MR Johns. 1993. Effect of pH and nitrogen source on pigment production byMonascus purpureus. Appl Microbiol Biotechnol 40: 132–138.Google Scholar
  19. 19.
    Chen MH and MR Johns. 1994. Effect of carbon source on ethanol and pigment production byMonascus purpureus. Enzyme Microb Technol 16: 584–590.Google Scholar
  20. 20.
    Dizon EI and PC Sanchez. 1984. Potential ofMonascus pigment as coloring agent for banana sauce and tocino. Phil Agr 67: 157–166.Google Scholar
  21. 21.
    Endo A. 1979. Monacolin K, a new hypocholesterolemic agent produced by aMonascus species. J Antibiot 32: 852–854.PubMedGoogle Scholar
  22. 22.
    Endo A. 1985. Microbial phosphorylation of compactin (ML-236B) and related compounds. J Antibiot 38: 328–332.PubMedGoogle Scholar
  23. 23.
    Endo A, K Hasumi and S Negishi. 1985. Monacolin J and L, new inhibitors of cholesterol biosynthesis produced byMonascus ruber. J Antibiot 38: 420–422.PubMedGoogle Scholar
  24. 24.
    Endo A, K Hasumi, T Nakamura, M Kunishima and M Masuda. 1985. Dihydromonacolin L and monacolin X, new metabolites that inhibit cholesterol biosynthesis. J Antibiot 38: 321–327.PubMedGoogle Scholar
  25. 25.
    Endo A, K Hasumi, A Yamada, R Shimoda and T Hiroshi. 1986. The synthesis of compactin (ML-236B) and monacolin K in fungi. J Antibiot 39: 1609–1616.PubMedGoogle Scholar
  26. 26.
    Endo A, D Komagata and H Shimada. 1986. Monacolin M, a new inhibitor of cholesterol biosynthesis. J Antibiot 39: 1670–1673.PubMedGoogle Scholar
  27. 27.
    Endo A, M Kuroda and Y Tsujita. 1976. ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced byPenicillium citrinum. J Antibiot 29: 1346–1348.PubMedGoogle Scholar
  28. 28.
    Engström W, O Larsson and W Sachsenmaier. 1989. The effects of tunicamycin, mevinolin and mevalonic acid on HMG-CoA reductase activity and nuclear division in the myxomycetePhysarum polycephalum. J Cell Sci 92: 341–344.PubMedGoogle Scholar
  29. 29.
    Evans PJ and HY Wang. 1984. Pigment production from immobilizedMonascus sp utilizing polymeric resin adsorption. Appl Environ Microbiol 47: 1323–1326.Google Scholar
  30. 30.
    Fabre CE, AL Santerre, MO Loret, R Baberian, A Parailleux, G Goma and PJ Blanc. 1993. Production and food application of the red pigments ofMonascus ruber. J Food Sci 58: 1099–1103.Google Scholar
  31. 31.
    Fielding BC, EJ Haws, JSE Holker, ADG Powell, A Robertson, DN Stanway, and W Whalley. 1960. Monascorubrin. Tetrahedron Lett 5: 24–27.Google Scholar
  32. 32.
    Fink-Gremmels J and L Leistner. 1989. Biologische Wirkungen vonMonascus purpureus. Fleischwirtschaft 69: 115–122.Google Scholar
  33. 33.
    Fink-Gremmels J, J Dresel and L Leistner. 1991. Einsatz vonMonascus-Extrakten als Nitrit-Alternative bei Fleischerzeugnissen. Fleischwirtschaft 71: 329–331.Google Scholar
  34. 34.
    Francis FJ. 1987. Lesser-known food colorants. Food Technol 62–68.Google Scholar
  35. 35.
    Greenspan MD and JB Yudkovitz. 1985. Mevinolinic acid biosynthesis byAspergillus terreus and its relationship to fatty acid biosynthesis. J Bacteriol 162: 704–707.PubMedGoogle Scholar
  36. 36.
    Gunde-Cimerman N, A Plemenitas and A Cimerman. 1993.Pleurotus fungi produce mevinolin an inhibitor of HMG-CoA reductase. FEMS Microbiol Lett 113: 333–337.PubMedGoogle Scholar
  37. 37.
    Hadfield JR, JSE Holker and DN Stanway. 1967. The biosynthesis of fungal metabolites. Part II. The β-oxo-lactone equivalents in rubropunctatin and monascorubrin. J Chem Soc (C) 751–755.Google Scholar
  38. 38.
    Han O and RE Mudgett. 1992. Effects of oxygen and carbon dioxide partial pressures onMonascus growth and pigment production in solid state fermentations. Biotechnol Prog 8: 5–10.Google Scholar
  39. 39.
    Hawksworth DL and JI Pitt. 1983. A new taxonomy forMonascus species based on cultural and microscopical characters. Aust J Bot 31: 51–61.Google Scholar
  40. 40.
    Haws EJ, JSE Holker, A Kelly, ADG Powell and A Robertson. 1959. The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc 70: 3598–3610.Google Scholar
  41. 41.
    Hesseltine CW. 1965. A millenium of fungi, food and fermentation. Mycologia 57: 149–197.PubMedGoogle Scholar
  42. 42.
    Hiroi T, T Shima, T Suzuki, M Tsukioka and N Ogasawara. Hyperpigment productive mutant ofMonascus anka for solid culture. Agric Biol Chem 43: 1975–1976.Google Scholar
  43. 43.
    Hopwood DA and DH Sherman. 1990. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24: 37–66.PubMedGoogle Scholar
  44. 44.
    Inouye Y, K Nakanishi, H Nishikawa, M Ohashi, A Terahara and S Yamamura. 1962. Structure of monascoflavin. Tetrahedron 1: 1195–1203.Google Scholar
  45. 45.
    Ishiwata H, M Watanabe and A Tanimura. 1974. Studies on the hygienic chemistry ofMonascus pigment. I. Digestion ofMonascus pigment-protein in complex with protease (in Japanese). J Food Hyg Soc Jap 15: 36–41.Google Scholar
  46. 46.
    Johns MR and DM Stuart. 1991. Production of pigments byMonascus in solid state culture. J Ind Microbiol 8: 23–28.Google Scholar
  47. 47.
    Johnson GT and F McHan. 1975. Some effects of zinc on the utilization of carbon sources byMonascus purpureus. Mycologia 67: 806–816.PubMedGoogle Scholar
  48. 48.
    Jones KD, WT Couldwell, DR Hinton, YH Su, DK He, L Anker and RE Law. 1994. Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun 205: 1681–1687.PubMedGoogle Scholar
  49. 49.
    Jůzlová P. 1994. Biosynthesis of pigments by the fungusMonascus purpureus (in Czech). PhD thesis, Prague Institute of Chemical Technology.Google Scholar
  50. 50.
    Jůzlová P, L Martínková and J Lozinski. 1994. Ethanol as substrate for pigment production by the fungusMonascus. Enzyme Microb Technol 16: 996–1001.Google Scholar
  51. 51.
    Kessler GA, WM Casey and LW Parks. 1992. Stimulation by heme of steryl ester synthase and aerobic sterol exclusion in the yeastSaccharomyces cerevisiae. Arch Biochem Biophys 296: 474–481.PubMedGoogle Scholar
  52. 52.
    Kimura K, D Komagata, S Murakawa and A Endo. 1990. Biosynthesis of monacolins: conversion of monacolin J to monacolin K (mevinolin). J Antibiot 43: 1621–1622.PubMedGoogle Scholar
  53. 53.
    Kiyohara H, T Watanabe, J Imai, N Takizawa, T Hatta, K Nagao and A Yamamoto. 1990. Intergeneric hydridization betweenMonascus anka andAspergillus oryzae by protoplast fusion. Appl Microbiol Biotechnol 33: 671–676.Google Scholar
  54. 54.
    Komagata D, H Shimada, S Murakawa and A Endo. 1989. Biosynthesis of monacolins: conversion of monacolin L to monacolin J by a monooxygenase ofMonascus ruber. J Antibiot 42: 407–412.PubMedGoogle Scholar
  55. 55.
    Kranz C, C Panitz and B Kunz. 1992. Biotransformation of free fatty acids in mixtures to methyl ketones byMonascus purpureus. Appl Microbiol Biotechnol 36: 436–439.Google Scholar
  56. 56.
    Kunz B and P Ober. 1987. Wachstums- und Stofwechseluntersuchungen vonMonascus purpureus. BioEng 3: 18–20.Google Scholar
  57. 57.
    Kunz B and G Stefan. 1992. Möglichten und Grenzen der Solid-State-Fermentation. Bioforum 5: 160–163.Google Scholar
  58. 58.
    Ladyman JAR. 1987. IncreasingMonascus pigment production. UK Patent 22 04 87A.Google Scholar
  59. 59.
    Landan NS, NA Baranova, VG Kreier, SN Vybornych, LI Bnyak and NS Egorov. 1991. Effect of the sterol synthesis inhibitor of lovastatin on the growth of yeast. Mikrobiologiya 60: 479–484.Google Scholar
  60. 60.
    Leistner L, J Fink-Gremmels and J Dresel. 1991.Monascus-extract as a possible alternative to nitrite in meats. 37th Int Congr Meat Sci Technol Proc 3: 1252–1256.Google Scholar
  61. 61.
    Lin CF. 1973. Isolation and cultural conditions ofMonascus sp for the production of pigments in a submerged shaken culture. J Ferment Technol 51: 407–414.Google Scholar
  62. 62.
    Lin CF and SJT Suen. 1973. Isolation of hyperpigment productive mutants ofMonascus sp F-2. J Ferment Technol 51: 757–759.Google Scholar
  63. 63.
    Lin CF and H Iizuka. 1982. Production of extracellular pigment by a mutant ofMonascus kaoliang sp nov. Appl Environ Microbiol 43: 671–676.Google Scholar
  64. 64.
    Lin TF, K Yakushijin, GH Buchi and AL Demain. 1992. Formation of water-solubleMonascus pigments by biological and semi-synthetic processes. J Ind Microbiol 9: 173–179.Google Scholar
  65. 65.
    Lin TF and AL Demain. 1991. Effect of nutrition ofMonascus sp on formation of red pigments. Appl Microbiol Biotechnol 36: 70–75.Google Scholar
  66. 66.
    Lin TF and AL Demain. 1994. Leucine interference in the production of water-soluble redMonascus pigments. Arch Microbiol 162: 114–119.Google Scholar
  67. 67.
    Lorenz RT and LW Parks. 1990. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles inSaccharomyces cerevisiae. Antimicrob Agents Chemother 34: 1660–1665.PubMedGoogle Scholar
  68. 68.
    Lotong N and P Suwanarit. 1990. Fermentation of ang-kak in plastic bags and regulation of pigmentation by initial moisture content. J Appl Bacteriol 68: 565–570.Google Scholar
  69. 69.
    Mak NK, WF Fong and YL Wong-Leung. 1990. Improved fermentative production ofMonascus pigments in roller bottle culture. Enzyme Microb Technol 12: 965–968.Google Scholar
  70. 70.
    Malfait JL, DJ Wilcox, DG Mercer and LD Barker. 1981. Cultivation of a filamentous mold in a glass pilot-scale airlift fermentor. Biotech Bioeng 23: 863–877.Google Scholar
  71. 71.
    Maltese WA, R Defendini RA Green, MS Kathleen and DK Donley. 1985. Suppression of murine neuroblastoma growthin vivo by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Clin Invest 76: 1748–1754.PubMedGoogle Scholar
  72. 72.
    Martínková L, P Jůzlová and D Veselý. 1995. Biological activity of polyketide pigments produced by the fungusMonascus. J Appl Bacteriol 79: 609–616.Google Scholar
  73. 73.
    McHan F and GT Johnson. 1970. Zinc and amino acids: important components of a medium promoting growth ofMonascus purpureus. Mycologia 62: 1018–1031.Google Scholar
  74. 74.
    Miyake T, S Sakai and S Ohno. 1982. Process for the production ofMonascus-pigment. UK Patent 2 102 024.Google Scholar
  75. 75.
    Moore RN, G Bigam, JK Chan, AM Hogg, TT Nakashima and JC Vederas. 1985. Biosynthesis of the hypocholesterolemic agent mevinolin byAspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by13C NMR and mass spectrometry. J Am Chem Soc 107: 3694–3701.Google Scholar
  76. 76.
    Munro E, M Patel, P Chan, L Betteridge, G Clunn, K Gallagher, A Hughes, M Schachter, J Wolfe and P Sever. 1994. Inhibition of human vascular smooth muscle cell proliferation by lovastatin: the role of isoprenoid intermediates of cholesterol synthesis. Eur J Clin Invest 24: 766–772.PubMedGoogle Scholar
  77. 77.
    Myers C, J Trepel, WK Kang, L Whitesell and L Neckers. 1992. Use of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase as a modality in cancer therapy. US Appl 882 223.Google Scholar
  78. 78.
    Nakamura CE and RH Abeles. 1985. Mode of interaction of β-hydroxy-β-methylglutaryl coenzyme. A reductase with strong binding inhibitors: compactin and related compounds. Biochemistry 24: 1364–1376.PubMedGoogle Scholar
  79. 79.
    Negishi S, ZC Huang, K Hasumi, S Murakawa and A Endo. 1986. Productivity of monacolin K (mevinolin) in the genusMonascus (in Japanese). Hakko Kogaku Kaishi 64: 584–590.Google Scholar
  80. 80.
    Newman A, RD Clutterbuck, RL Powles and JL Millar. 1994. Selective inhibition of primary acute myeloid leukaemia cell growth by lovastatin. Leukemia 8: 2022–2029.Google Scholar
  81. 81.
    Nozaki H, S Date, H Kondo, H Kiyohara, D Takaoda, T Tada and M Nakayama. 1991. Ankalactone, a new α,β-unsaturated γ-lactone fromMonascus anka. Agric Biol Chem 55: 899–900.Google Scholar
  82. 82.
    Panitz C, P Frost and B Kunz. 1991. Pigment- und Biomassebildung vonMonascus purpureus in synthetischen Medien. BioEng 7: 72–75.Google Scholar
  83. 83.
    Peters N, C Panitz and B Kunz. 1993. The influence of carbohydrate dissimilation on the fatty acid metabolism ofMonascus purpureus. Appl Microbiol Biotechnol 39: 589–592.Google Scholar
  84. 84.
    Rashbaum SA and EMY Barrington. 1983. Natural red coloring prepared from an oat substrate. US Patent 4418081.Google Scholar
  85. 85.
    Robinson JA. 1991. Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Phil Trans R Soc Lond B 332: 107–114.Google Scholar
  86. 86.
    Sato K, S Iwakami, Y Goda, E Okuyama, K Yoshihira, T Ichi, Y Odake, H Noguchi and U Sankawa. 1992. Novel natural colorants fromMonascus anka U-1. Heterocycles 34: 2057–2060.Google Scholar
  87. 87.
    Serizawa N, K Nakagawa, K Hamano, Y Tsujita, A Terahara and H Kuwano. 1983. Microbial hydroxylation of ML-236B (compactin) and monacolin K (MB-530B). J Antibiot 36: 604–607.PubMedGoogle Scholar
  88. 88.
    Serizawa N, K Nakagawa, Y Tsujita, A Terahara, H Kuwano and M Tanaka. 1983. 6α-hydroxy-iso-ML-236B (6α-hydroxy-isocompactin) and ML-236A, microbial transformation products of ML-236B. J Antibiot 36: 918–920.PubMedGoogle Scholar
  89. 89.
    Shepherd D. 1977. The relationship between pigment production and sporulation inMonascus. In: Biotechnology and Fungal Differentiation, FEMS Symposium No 4 (Meyrath J and JD Bullock, eds), pp 103–118, Academic Press, London.Google Scholar
  90. 90.
    Shiao M and H Don. 1985. Biosynthesis of mevinolin, a hypocholesterolemic fungal metabolite, inAspergillus terreus. Proc Natl Sci Counc [B] 11: 223–231.Google Scholar
  91. 91.
    Schindler S, TJ Bach and HK Lichtenthaler. 1985. Differential inhibition by mevinolin of prenyllipid accumulation in radish seedlings. Z Naturforsch 40c: 208–214.Google Scholar
  92. 92.
    Sirtori CR. 1983. Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Therapeut 60: 431–459.Google Scholar
  93. 93.
    St Martin EJ. 1990. Production of crystalline pigments fromMonascus during fermentation. US Patent 4927760.Google Scholar
  94. 94.
    Tada M, M Tsubouchi, K Matsuo, H Takimoto, Y Kimura and S Takagi. 1990. Mechanism of photoregulated carotenogenesis inRhodotorula minuta. VIII. Effect of mevinolin on photoinduced carotenogenesis. Plant Cell Physiol 31: 319–323.Google Scholar
  95. 95.
    Ura H, T Obara, N Nishino, S Tanno, K Okamura and M Namiki. 1994. Cytotoxicity of simvastatin to pancreatic adenocarcinoma cells containing mutant ras gene. Jap J Cancer Res 85: 633–638.Google Scholar
  96. 96.
    Vanvliet AK, GGF Vanthiel, RH Huisman, H Moshage, SH Yap and LH Cohen. 1995. Different effects of 3-hydroxy-3-methylglutarylcoenzyme: A reductase inhibitors on sterol synthesis in various human cell types. Bba-Lipid Metab 1254: 105–111.Google Scholar
  97. 97.
    Wong HC and YS Bau. 1977. Pigmentation and antibacterial activity of fast neutron- and X-ray-induced strains ofMonascus purpureus Went. Plant Physiol 60: 578–581.Google Scholar
  98. 98.
    Wong HC and YS Bau. 1978. Morphology and photoresponses of fast-neutron and X-ray induced strains ofMonascus purpureus. Mycologia 70: 645–659.Google Scholar
  99. 99.
    Wong HC and PE Koehler. 1981. Production and isolation of an antibiotic fromMonascus purpureus and its relationship to pigment production. J Food Sci 46: 589–592.Google Scholar
  100. 100.
    Yongsmith B, S Krairak and R Bavavoda. 1994. Production of yellow pigments in submerged culture of a mutant ofMonascus spp. J Ferment Bioeng 78: 223–228.Google Scholar
  101. 101.
    Yongsmith B, W Tabloka, W Yongmanitchai and R Bavavoda. 1993. Culture conditions for yellow pigment formation byMonascus sp KB 10 grown on cassava medium. World J Microbiol Biotechnol 9: 85–90.Google Scholar
  102. 102.
    Yoshimura M, S Yamanaka, K Mitsugi and Y Hirose. 1975. Production ofMonascus pigment in a submerged culture. Agric Biol Chem 39: 1789–1795.Google Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • P Jůzlová
    • 1
  • L Martínková
    • 2
  • V Křen
    • 2
  1. 1.Department of Fermentation Chemistry and BioengineeringInstitute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Laboratory of Biotransformation, Department of Biogenesis and Biotechnology of Natural Products, Institute of MicrobiologyCzech Academy of SciencesPrague 4Czech Republic

Personalised recommendations