Journal of Industrial Microbiology

, Volume 16, Issue 3, pp 145–154 | Cite as

Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter

  • R S Donovan
  • C W Robinson
  • B R Glick


This review examines factors which influence the expression of foreign proteins inEscherichia coli under the transcriptional control of thelac andtac promoters, and discusses conditions for maximizing the production of a foreign protein using this system. Specifically, the influence of IPTG (isopropyl-β-d-thiogalactoside) concentration, temperature, composition of the growth medium, the point in the growth curve at which cells are induced with either IPTG or lactose, and the duration of the induction phase are discussed.


lac promoter tac promoter recombinant DNA protein overexpression fermentation strategies IPTG lactose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles RH, PA Frey and WP Jencks. 1992. Biochemistry. 383 pp, Jones & Bartlett Publishers, Boston, MA.Google Scholar
  2. 2.
    Abrahmsén L, T Moks, B Nilsson and M Uhlén. 1986. Secretion of heterologous gene products to the culture medium ofEscherichia coli. Nucl Acids Res 14: 7487–7500.PubMedGoogle Scholar
  3. 3.
    Ahmed S and IR Booth. 1983. The effect of β-galactosides on the proton motive force and growth ofEscherichia coli. J Gen Microbiol 129: 2521–2529.PubMedGoogle Scholar
  4. 4.
    Amann E, J Brosius and M Ptashne. 1983. Vectors bearing a hybridtrp-lac promoter useful for regulated expression of cloned genes inEscherichia coli. Gene 25: 167–178.PubMedGoogle Scholar
  5. 5.
    Anand NN, S Mandal, CR Mackenzie, J Sadowska, B Sigurskjold, NM Young, DR Bundle and SA Narang. 1991. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for aSalmonella serotype B O-antigen. J Biol Chem 266: 21874–21879.PubMedGoogle Scholar
  6. 6.
    Auger EA and GN Bennett. 1987. Temperature optimization ofin vivo expression from theE. coli trp andtrp: lac promoters. Biotechnol Lett 8: 157–162.Google Scholar
  7. 7.
    Baneyx F, A Ayling, T Palumbo, D Thomas and G Georgiou. 1991. Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space ofEscherichia coli. Appl Microbiol Biotechnol 36: 14–20.PubMedGoogle Scholar
  8. 8.
    Batt CA, E O'Neill, SR Novak, J Ko and A Sinskey. 1986. Hyperexpression ofEscherichia coli xylose isomerase. Biotechnol Prog 2: 140–144.Google Scholar
  9. 9.
    Beckwith JR. 1987. The lactose operon. In:Escherichia coli andSalmonella typhimurium. Cellular and Molecular Biology (Neidhardt FC, JL Ingraham, KB Low, B Magasanik, M Schaechter and HE Umbarger, eds), Vol 2, pp 1444–1452, American Society for Microbiology, Washington, DC.Google Scholar
  10. 10.
    Bentenbaugh MJ and P Dhurjati. 1990. A comparison of mathematical model predictions to experimental measurements for growth and recombinant protein production in induced cultures ofEscherichia coli. Biotechnol Bioeng 36: 124–134.Google Scholar
  11. 11.
    Bentenbaugh MJ, C Beaty and P Dhurjati. 1989. Effects of plasmid amplification and recombinant gene expression on the growth kinetics of recombinantE. coli. Biotechnol Bioeng 33: 1425–1436.Google Scholar
  12. 12.
    Bentley WE, RH Davis and DS Kompala. 1991. Dynamics of CAT expression inE. coli. Biotechnol Bioeng 38: 749–760.Google Scholar
  13. 13.
    Bentley WE, N Mirjalili, DC Anderson, RH Davis and DS Kompala. 1990. Plasmid encoded protein: the principal factor of ‘metabolic burden’ associated with recombinant bacteria. Biotechnol Bioeng 35: 668–681.Google Scholar
  14. 14.
    Better M, CP Chang, RR Robinson and AH Horwitz. 1988.Escherichia coli secretion of an active chimeric antibody fragment. Science 240: 1041–1043.PubMedGoogle Scholar
  15. 15.
    Blight MA and IB Holland. 1994. Heterologous protein secretion and the versatileEscherichia coli haemolysin translocator. Trends Biotechnol 12: 450–455PubMedGoogle Scholar
  16. 16.
    Cabilly S. 1989. Growth at sub-optimal temperature allows the production of functional, antigen-binding Fab fragments inEscherichia coli. Gene 85: 553–557.PubMedGoogle Scholar
  17. 17.
    Carrier JE, ME Nugent, WCA Tacon and SB Primrose. 1983 High expression of cloned genes inE. coli and its consequences. Trends Biotechnol 1: 109–113.Google Scholar
  18. 18.
    Carter P, RF Kelley, ML Rodrigues, B Snedecor, M Covarrubias, M Velligan, WL Wong, AM Rowland, CE Kotts, ME Carver, M Yang, JH Bourell, HM Shepard and D Henner. 1992. High levelEscherichia coli expression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163–167.PubMedGoogle Scholar
  19. 19.
    Chalmers JJ, E Kim, JN Telford, EY Wong, WC Tacon, ML Shuler and DB Wilson. 1990. Effects of temperature onEscherichia coli overproducing β-lactamase or human epidermal growth factor. Appl Environ Microbiol 56: 104–111.PubMedGoogle Scholar
  20. 20.
    Chesshyre JA and AR Hipkiss. 1989. Low temperatures stabilize interferon alpha-2 against proteolysis inMethylophilus methylotrophus andEscherichia coli. Appl Microbiol Biotechnol 31: 158–162.Google Scholar
  21. 21.
    Chou C-H, GN Bennett and K-Y San. 1994. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production inEscherichia coli dense cultures. Biotechnol Bioeng 44: 952–960.Google Scholar
  22. 22.
    DeBellis D and I Schwartz. 1990. Regulated expression of foreign genes fused tolac: control by glucose levels in the growth medium. Nucl Acids Res 18: 1311.PubMedGoogle Scholar
  23. 23.
    De Boer HA, LJ Comstock and M Vasser. 1983. Thetac promoter: a functional hybrid derived from thetrp andlac promoters. Proc Natl Acad Sci USA 80: 21–25.PubMedGoogle Scholar
  24. 24.
    Deushle U, W Kammerer, R Gentz and H Bujard. 1986. Promoters ofEscherichia coli: a hierarchy ofin vivo strength indicates alternate structures. EMBO J 3: 2987–2994.Google Scholar
  25. 25.
    Doran JL, BK Leskiw, AK Petrich, DWS Westlake and SE Jensen. 1990. Production ofStreptomyces clavuligerus isopenicillin N synthase inEscherichia coli using a two cistron expression system. J Ind Microbiol 5: 197–206.PubMedGoogle Scholar
  26. 26.
    Foor F, N Morin and KA Bostian. 1993. Production of L-dihydroxyphenylamine inEscherichia coli with tyrosine phenol-lyase gene cloned fromErwinia herbicola. Appl Environ Microbiol 59: 3070–3075.PubMedGoogle Scholar
  27. 27.
    Fuller F. 1982. A family of cloning vectors containing thelac UV5 promoter. Gene 19: 43–54.PubMedGoogle Scholar
  28. 28.
    Georgiou G and ML Shuler. 1988. Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction inEscherichia coli. Biotechnol Bioeng 32: 741–748.Google Scholar
  29. 29.
    Glick BR and JJ Pasternak. 1994. The molecular biotechnology revolution. In: Molecular Biotechnology: Principles and Applications of Recombinant DNA, pp 5–15, American Society for Microbiology, Washington, DC.Google Scholar
  30. 30.
    Glick BR. 1995. Metabolic load and heterologous gene expression. Biotechnol Adv 13: 247–261.PubMedGoogle Scholar
  31. 31.
    Glick BR and GK Whitney. 1987. Factors affecting the expression of foreign proteins inEscherichia coli. J Ind Microbiol 1: 277–282.Google Scholar
  32. 32.
    Harcum SW and WE Bentley. 1993. Response dynamics of 26-, 34-, 39-, 54-, and 80-kDA proteases in induced cultures of recombinantEscherichia coli. Biotechnol Bioeng 42: 675–685.Google Scholar
  33. 33.
    Hartl FU, R Hlodan and T Langer. 1994. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 18: 21–25.Google Scholar
  34. 34.
    Hodgson J. 1993. Expression systems: a user's guide. Bio/Technology 11: 887–893.Google Scholar
  35. 35.
    Ingraham J. 1987. Effect of temperature, pH, water activity, and pressure on growth. In:Escherichia coli andSalmonella typhimurium. Cellular and Molecular Biology (Neidhardt FC, JL Ingraham, KB Low, B Magasanik, M Schaechter and HE Umbarger eds), Vol 2, pp 1543–1554, American Society for Microbiology, Washington, DC.Google Scholar
  36. 36.
    Itakura K, T Hirose, R Crea and AD Riggs. 1977. Expression inEscherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198: 1056–1063.PubMedGoogle Scholar
  37. 37.
    Jae-Ho L, Y Choi, S Kang, H Park and I Kwon. 1989. Production of human leukocyte interferon inEscherichia coli by control of growth rate in fed-batch fermentation. Biotechnol Lett 10: 695–698.Google Scholar
  38. 38.
    Kane JF, 1995. Effects of rare codon clusters on high level expression of heterologous proteins inEscherichia coli. Curr Opinion Biotechnol 6: 494–500.Google Scholar
  39. 39.
    Kapralek F, P Jecmen, J Sedlacek, M Fabry and S Zadrazil. 1991. Fermentation conditions for high-level expression of thetac promoter controlled calf prochymosin cDNA inEscherichia coli HB101. Biotechnol Bioeng 37: 71–79.Google Scholar
  40. 40.
    Kennell D and H Riezman. 1977. Transcription and translation initiation frequencies of theEscherichia coli lac operon. J Mol Biol 114: 1–21.PubMedGoogle Scholar
  41. 41.
    Khosla C, JE Curtis, P Bydalek, JR Schwartz and JE Bailey. 1990. Expression of recombinant proteins inEscherichia coli using an oxygen-responsive promoter. Bio/Technology 8: 554–558.PubMedGoogle Scholar
  42. 42.
    Knappik A, C Krebber and A Pluckthun. 1993. The effect of folding catalysts on thein vivo folding process of different antibody fragments expressed inEscherichia coli. Bio/Technology 11: 77–83.PubMedGoogle Scholar
  43. 43.
    Knappik A and A Pluckthun. 1995. Engineered turns of a recombinant antibody improve itsin vivo folding. Protein Eng 8: 81–89.PubMedGoogle Scholar
  44. 44.
    Kosinski MJ and JE Bailey. 1991. Temperature and induction effects on the degradation rate of an abnormal β-galactosidase inEscherichia coli. J Biotechnol 18: 55–68.PubMedGoogle Scholar
  45. 45.
    Kosinski MJ, U Rinas and JE Bailey. 1992. Isopropyl-β-d-thiogalactopyranoside influences the metabolism ofEscherichia coli. Appl Environ Microbiol 36: 782–784.Google Scholar
  46. 46.
    Kosinski MJ, U Rinas and JE Bailey. 1992. Proteolytic response to the expression of an abnormal β-galactosidase inEscherichia coli. Appl Microbiol Biotechnol 37: 335–341.PubMedGoogle Scholar
  47. 47.
    Kudo T, C Kato and K Horikoshi. 1983. Excretion of the penicillinase of an alkalophilicBacillus sp through theEscherichia coli outer membrane. J Bacteriol 156: 949–951.PubMedGoogle Scholar
  48. 48.
    Laffend L and ML Shuler. 1994. Structured model of genetic control via thelac promoter inEscherichia coli. Biotechnol Bioeng 43: 399–410.Google Scholar
  49. 49.
    Laffend LA and ML Shuler. 1994. Ribosomal protein limitations inEscherichia coli under conditions of high translational activity. Biotechnol Bioeng 43: 388–398.Google Scholar
  50. 50.
    LaVallie ER, EA DiBlasio, S Kovacic, KL Grant, PF Schendel and JM McCoy. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in theE. coli cytoplasm. Bio/Technology 11: 187–193.PubMedGoogle Scholar
  51. 51.
    Lee J and WF Ramirez. 1992. Mathematical modeling of induced foreign protein production by recombinant bacteria. Biotechnol Bioeng 39: 635–646.Google Scholar
  52. 52.
    Lee SB and JE Bailey. 1984. Genetically structured models forlac promoter-operator function in theEscherichia coli chromosome and multicopy plasmids:lac operator function. Biotechnol Bioeng 34: 1327–1382.Google Scholar
  53. 53.
    Lee SB and JE Bailey. 1984. Genetically structured models forlac Promoter-operator function in theEscherichia coli chromosome and multicopy plasmids:lac promoter function. Biotechnol Bioeng 26: 1383–1389.Google Scholar
  54. 54.
    Li X, JW Robbins and KB Taylor. 1990. The production of recombinant β-galactosidase inEscherichia coli in yeast extract enriched medium. J Ind Microbiol 5: 85–94.PubMedGoogle Scholar
  55. 55.
    Mitraki A and J King. 1989. Protein folding intermediates and inclusion body formation. Bio/Technology 7: 690–697.Google Scholar
  56. 56.
    Murray NE, SA Bruce and K Murray. 1979. Molecular cloning of T4 DNA ligase gene from bacteriophage T4. J Molec Biol 132: 493–505.PubMedGoogle Scholar
  57. 57.
    Nagahari K, S Munakata, Y Aoyagi and S Mizushima. 1985. Secretion into the culture medium of a foreign gene product fromEscherichia coli: use of theompF gene for secretion of human β-endorphin. EMBO J 4: 3589–3592.PubMedGoogle Scholar
  58. 58.
    Nancib N, H Branlant and C Boudrant. 1991. Metabolic roles of peptone and yeast extract for the culture of a recombinant strain ofEscherichia coli. J Ind Microbiol 8: 165–170.PubMedGoogle Scholar
  59. 59.
    Neubauer P, K Hofmann, O Holst, B Mattiason and P Kruschke. 1992. Maximizing the expression of a recombinant gene inEscherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol 36: 739–744.PubMedGoogle Scholar
  60. 60.
    Neubauer P and K Hofmann. 1994. Efficient use of lactose for thelac promoter controlled overexpression of the main antigenic protein of the foot and mouth disease virus inEscherichia coli under fed-batch fermentation conditions. FEMS Microbiol Rev 14: 99–102.PubMedGoogle Scholar
  61. 61.
    Oxer MD, CM Bently, JG Doyle, TC Peakman, IG Charles and A Makoff. 1991. High level heterologous expression inE. coli using the anaerobically-activatednirB promoter. Nucl Acids Res 19: 1899–1892.PubMedGoogle Scholar
  62. 62.
    Pack P, M Kujau, V Schroeckh, U Knupfer, R Wenderoth, D Riesenberg and A Pluckthun. 1993. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation ofEscherichia coli. Bio/Technology 11: 1271–1277.PubMedGoogle Scholar
  63. 63.
    Paice MG, R Bernier and L Jurasek. 1988. Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol Bioeng 32: 235–239.Google Scholar
  64. 64.
    Plückthun A and A Skerra. 1989. Expression of functional antibody Fv and Fab fragments inEscherichia coli. Meth Enzymol 178: 497–515.PubMedGoogle Scholar
  65. 65.
    Postma PW, CP Broekhuizen and RH Geerse. 1989. The role of the PEP: carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiol Rev 63: 69–80.Google Scholar
  66. 66.
    Raibound E, P Stanssens and FW Fiers. 1981. Plasmid vectors for high efficiency expression controlled by the pL promoter of coliphage lambda. Gene 15: 81–93.PubMedGoogle Scholar
  67. 67.
    Ramirez DM and WE Bentley. 1993. Enhancement of recombinant protein synthesis and stability via coordinated amino acid addition. Biotechnol Bioeng 41: 557–565.Google Scholar
  68. 68.
    Ramirez OT, R Zamora, G Espinosa, E Merino, F Bolivar and R Quintero. 1994. Kinetic study of penicillin acrylase production by recombinantE. coli in batch cultures. Process Biochem 29: 197–206.Google Scholar
  69. 69.
    Reznikoff WS and JN Abelson. 1980. Thelac promoter. In: The Operon (Miller JH and WS Reznikoff, eds), pp 221–224, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  70. 70.
    Rockenbach SK, ML Dupuis, TW Pitts, CK Marschke and CC Tomich. 1991. Secretion of active truncated CD-4 intoEscherichia coli periplasm. Appl Microbiol Biotechnol 35: 32–37.PubMedGoogle Scholar
  71. 71.
    Ryan W, J Parulekar and B Stark, 1989. Expression of β-lactamase by recombinantEscherichia coli strains containing plasmids of different sizes—effects of pH, phosphate and dissolved oxygen. Biotechnol Bioeng 34: 309–319.Google Scholar
  72. 72.
    Sambrook J, EF Fritsch and T Maniatis. 1989. Appendix A: Bacterial media, antibiotics, and bacterial strains. In: Molecular Cloning: a Laboratory Manual, 2nd edn, pp A.1-A.13, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  73. 73.
    Shibui T and K Nagahari. 1992. Secretion of a functional Fab fragment inEscherichia coli and the influence of culture conditions. Appl Microbiol Biotechnol 37: 352–357.PubMedGoogle Scholar
  74. 74.
    Shu J and ML Shuler. 1992. Amino acid supplementation decreases plasmid retention inEscherichia coli. Biotechnol Bioeng 40: 1197–1202.Google Scholar
  75. 75.
    Skerra A and A Plückthun. 1991. Secretion andin vivo folding of the Fab fragment of the antibody McPC603 inEscherichia coli: influence of disulphides and cis-prolines. Prot Eng 4: 971–979.Google Scholar
  76. 76.
    Skerra A, I Pfitzinger and A Plückthun. 1991. The functional expression of antibody Fv fragments inEscherichia coli: improved vectors and a generally applicable purification technique. Bio/Technology 9: 273–278.PubMedGoogle Scholar
  77. 77.
    Solaiman DKY and GA Somkuti. 1991. Expression of streptomycete cholesterol oxidase inEscherichia coli. J Ind Microbiol 8: 253–258.PubMedGoogle Scholar
  78. 78.
    Somerville JE, SC Goshorn, HP Fell and RP Darveau. 1994. Bacterial aspects associated with the expression of a single-chain antibody fragment inEscherichia coli. Appl Microbiol Biotechnol 42: 595–603.PubMedGoogle Scholar
  79. 79.
    Straight JV and D Ramkrishna. 1989. Bacterial growth on lactose: an experimental investigation. Biotechnol Bioeng 34: 705–716.Google Scholar
  80. 80.
    Summers DK. 1991. Kinetics of plasmid loss. Trends Biotechnol 9: 273–278.PubMedGoogle Scholar
  81. 81.
    Surek B, M Wilhelm and W Hillen. 1991. Optimizing the promoter and ribosome binding sequence for expression of human single chain urokinase-like plasminogen activator inEscherichia coli and stabilization of the product by avoiding heat shock response. Appl Microbiol Biotechnol 34: 488–494.PubMedGoogle Scholar
  82. 82.
    Takagi H, Y Morinaga, M Tsuchiya, H Ikemura and M Inouye. 1988. Control of folding of proteins secreted by a high expression vector, pIN-III-OmpA: 16-fold increase in production of active subtilisin E inEscherichia coli. Bio/Technology 6: 948–950.Google Scholar
  83. 83.
    Takkinen K, ML Laukkanen, D Sizmann, K Alfthan, T Immonen, L Vanne, M Kaartinen, JKC Knowles and TT Teeri. 1991. An active single-chain antibody containing a cellular linker domain is secreted byEscherichia coli. Prot Eng 4: 837–841.Google Scholar
  84. 84.
    Togna AP, ML Shuler and DB Wilson. 1993. Effects of plasmid copy number and runaway plasmid replication on overproduction and excretion of β-lactamase fromEscherichia coli. Biotechnol Prog 9: 31–39.PubMedGoogle Scholar
  85. 85.
    Warnes AR, JR Stephenson, AR Fooks and J Melling. 1991. Expression of recombinant protein A from thelac promoter is not subject to catabolite repression when grown under specific conditions in continuous culture. Biotechnol Bioeng 38: 1050–1058.Google Scholar
  86. 86.
    Whitney GK, BR Glick and CW Robinson. 1989. Induction of T4 DNA ligase in a recombinant strain ofEscherichia coli. Biotechnol Bioeng 33: 991–998.Google Scholar
  87. 87.
    Winograd E, MA Pulido and M Wasserman. 1993. Production of DNA-recombinant peptides bytac-inducible vectors using micromolar concentrations of IPTG. Biotechniques 14: 886–887.PubMedGoogle Scholar
  88. 88.
    Wood TK and SW Peretti. 1991. Effect of chemically-induced, clonedgene expression on protein synthesis inE. coli. Biotechnol Bioeng 38: 397–412.Google Scholar
  89. 89.
    Yabuta M, S Onai-Miura and K Ohsuye. 1995. Thermo-inducible expression of a recombinant fusion protein byEscherichia coli lac repressor mutants. J Biotechnol 39: 67–73.PubMedGoogle Scholar
  90. 90.
    Yu P and K-Y San. 1993. Continuous production of cell-free recombinant proteins usingEscherichia coli. Biotechnol Prog 9: 587–593.PubMedGoogle Scholar
  91. 91.
    Zabin I and AV Fowler. 1980. β-Galactosidase, the lactose permease protein, and thiogalactoside transacetylase. In: The Operon (Miller JH and WS Reznikoff, eds), pp 89–121, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • R S Donovan
    • 1
    • 2
  • C W Robinson
    • 1
    • 2
  • B R Glick
    • 2
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations