Journal of Industrial Microbiology

, Volume 15, Issue 4, pp 339–346 | Cite as

Structure, function and immunochemistry of bacterial exopolysaccharides

  • R Weiner
  • S Langille
  • E Quintero


There has been much written on bacterial exopolysaccharides (EPS) and their role in virulence. Less has been published regarding EPS in free living species. This review focuses on that subject, emphasizing their functions in the environment and the use of antibody probes to study them.


polysaccharides bacterial capsule biofilm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham JM, CS Freitag, JR Clements and BI Eisenstein. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae ofEscherichia coli. Proc Natl Acad Sci USA 82: 5724–5727.PubMedGoogle Scholar
  2. 2.
    Ada GL. 1987. How does the immune system handle antigen proteins versus carbohydrate? In: Towards Better Carbohydrate Vaccines (Bell R and G Torrigiani, eds), pp 335–345, John Wiley and Sons, London.Google Scholar
  3. 3.
    Allison DG and IW Sutherland. 1987. The role of exopolysaccharides in adhesion of freshwater bacteria. J Gen Microbiol 133: 1319–1327.Google Scholar
  4. 4.
    Ballou CE. 1982. A study of the immunochemistry of three yeast mannans. J Biol Chem 245: 1197–1203.Google Scholar
  5. 5.
    Bartlett DH, ME Wright and M Silverman. 1988. Variable expression of extracellular polysaccharide in the marine bacteriumPseudomonas atlantica is controlled by genome rearrangement. Proc Natl Acad Sci USA 85: 3923–3927.Google Scholar
  6. 6.
    Batchelor RA, GE Araguchi, RA Hull and S Hull. 1991. Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane ofE. coli. J Bacteriol 173: 5699–5704.PubMedGoogle Scholar
  7. 7.
    Bayer AS, F Eftekhar, J Tu, CJ Nost and DP Speert. 1990. Oxygen dependent up-regulation of mucoid exopolysaccharide (alginate) production inPseudomonas aeruginosa. Infect Immun 58: 1344–1349.PubMedGoogle Scholar
  8. 8.
    Bayer M and H Thurow. 1977. Polysaccharide capsule ofEscherichia coli: microscope study of its size, structure, and sites of synthesis. J Bacteriol 130: 911–936.PubMedGoogle Scholar
  9. 9.
    Bhattacharjee AK, JE Bennett and CPJ Glaudemans. 1984. Capsular polysaccharides ofCryptococcus neoformans. Rev Infect Dis 6: 619–624.PubMedGoogle Scholar
  10. 10.
    Binns AN and MF Thomashow. 1988. Cell biology ofAgrobacterium infection and transformation of plants. Ann Rev Microbiol 42: 575–606.Google Scholar
  11. 11.
    Bortolussi R, P Ferrieri, B Bjorksten and PG Quie. 1978. Capsular K1 polysaccharide ofEscherichia coli: relationship to virulence in newborn rats and resistance to phagocytosis. Infect Immun 25: 293–298.Google Scholar
  12. 12.
    Boulnois GJ and K Jann. 1989. Bacterial polysaccharide capsule synthesis, export and evolution of structural diversity. Mol Microbiol 3: 1819–1823.Google Scholar
  13. 12a.
    Brierley CL. 1991. Bioremediation of metal-contaiminated surface and groundwaters. Geomicrobiol J 8: 201–223.Google Scholar
  14. 13.
    Brill JA, C Quinlan-Walshe and S Gottesman. 1988. Fine-structure mapping and identification of two regulators of capsule synthesis inEscherichia coli K12. J Bacteriol 170: 2599–2611.PubMedGoogle Scholar
  15. 14.
    Brown CM, DC Ellwood and JR Hunter. 1977. Growth of bacteria at surfaces: influence of nutrient limitation. FEMS Microbiol Lett 1: 163–166.Google Scholar
  16. 15.
    Carlson RW. 1984. Heterogeneity ofRhizobium lipopolysaccharides. J Bacteriol 158: 1012–1017.PubMedGoogle Scholar
  17. 16.
    Christensen BE. 1989. The role of extracellular polysaccharides in biofilms. J Biotechnol 10: 181–202.Google Scholar
  18. 17.
    Christensen B, J Kjosbakken and O Smidsrod. 1985. Partial chemical and physical characterization of two extracellular polysaccharides produced by marine periphyticPseudomonas sp strain NCMB 2021. Appl Environ 50: 837–845.Google Scholar
  19. 18.
    Colwell R, E Pariser and A Sinsheep (eds). 1985. Biotechnology of Marine Polysaccharides. Hemisphere Pub, Washington, 559 pp.Google Scholar
  20. 19.
    Corpe WA. 1973. Microfouling: the role of primary film forming bacteria. In: Proceedings of the Third International Congress on Marine Corrosion Foulding (Ackjer RF, BF Brown, JR DePalma and WP Iverson, eds), pp 598–609, Northwestern University Press, Evanston, IL.Google Scholar
  21. 20.
    Costerton JW, T Marrie and K-J Cheng. 1985. Phenomena of bacterial adhesion. In: Bacterial Adhesion (Savage D and M Fletcher, eds), pp 3–43, Plenum Press, NY.Google Scholar
  22. 21.
    Costerton JW, K-J Cheng, GG Geesey, TI Ladd, JCNM Dasgupta and TJ Marrie. 1987. Bacterial biofilms in nature and disease. Ann Rev Microbiol 41: 435–464.Google Scholar
  23. 22.
    Costerton JW, TJ Marrie and K-J Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35: 299–324.PubMedGoogle Scholar
  24. 23.
    Crisp DJ and JS Ryland. 1960. Influence of filming and of surface texture on the settlement of marine organisms. Nature 185: 119.Google Scholar
  25. 24.
    Cross A. 1990. The biologic significance of bacterial encapsulation. Curr Top Microbiol Immunol 150: 87–95.PubMedGoogle Scholar
  26. 25.
    Cundell AM and R Mitchell. 1977. Microbial succession on a wooden surface exposed to the sea. Int Biodeterior Bull 13: 67–73.Google Scholar
  27. 26.
    Daniel A. 1995. The primary film as a factor in settlement of marine foulers. J Madras Univ 25B: 89–200.Google Scholar
  28. 27.
    Davidson DW. 1978. Production of polysaccharide byXanthomonas campestris in continuous culture. FEMS Lett 3: 347–349.Google Scholar
  29. 28.
    Dawson MP, BA Humphrey and KC Marshall. 1981. Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. Curr Microbiol 6: 196–199.Google Scholar
  30. 29.
    Decho AW. 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28: 73–153.Google Scholar
  31. 30.
    Deretic V, MJ Schurr, JC Boucher and DW Martin. 1994. Conversion ofPseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence b, alternative sigma factors. J Bacteriol 176: 2773–2780.PubMedGoogle Scholar
  32. 31.
    DiSalvo LH and GW Daniels. 1975. Observations on estuarine microfouling using the scanning electron microscope. Microbial Ecol 2: 234–240.Google Scholar
  33. 31a.
    Dudman WF. 1977. The role of surface polysaccharides in natural environments. In: Surface Carbohydrates of the Prokaryotic Cell (Sutherland IW, ed), pp 357–414, Academic Press, London.Google Scholar
  34. 32.
    Evans CTG, RG Yeo and DC Ellwood. 1979. Continuous culture studies on the production of extracellular polysaccharides. In: Microbial Polysaccharides and Polysaccharases (Berkeley RCW, GW Gooday and DC Ellwood, eds), Academic Press, London, New York, and San Francisco.Google Scholar
  35. 33.
    Finan TM, AM Hirsch, JA Leigh, E Johansen, GA Kuldau, S Deegan, GC Walker and ER Singer. 1985. Symbiotic mutants ofRhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869–877.PubMedGoogle Scholar
  36. 34.
    Fletcher M and GD Floodgate. 1973. An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J Gen Microbiol 74: 325–334.Google Scholar
  37. 35.
    Franklin MJ and DE Ohman. 1993. Identification ofalg F in the alginate biosynthetic cluster ofPseudomonas aeruginara which is required for alginate acetylation. J Bacteriol 175: 5057–5065.PubMedGoogle Scholar
  38. 36.
    Gerchakov SM, DS Mardzalek, FJ Roth and LR Udey. 1976. Succession of periphytic microorganisms on metal and glass surfaces in natural seawater. In: Proceedings of the Fourth International Congress of Marine Corrosion Fouling, Gaithersberg, MD, USA.Google Scholar
  39. 37.
    Glynn AA. 1972. Microbial Pathogeneicity in Man and Animals. p 75. Cambridge Univ Press, London and New York.Google Scholar
  40. 38.
    Goding JW. 1987. Monoclonal Antibodies: Principles and Practice. p 9. Academic Press, London, UK.Google Scholar
  41. 39.
    Goldman RC and L Leive. 1980. Heterogeneity of antigenic-side chain length in lipopolysaccharide fromEscherichia coli 0111 andSalmonella typhimurium LT2. Eur J Biochem 107: 145–153.PubMedGoogle Scholar
  42. 40.
    Goldstein IJ, RC Hughes, M Monsigny, T Osawa and N Sharon. 1980. What should be called a lectin? Nature 285: 66.Google Scholar
  43. 41.
    Goodman JW. 1984. Immunogenicity and antigenic specificity. In: Basic and Clinical Immunology (Stites DP, JD Stobo, HH Fudenberg and JV Wells, eds), 5th edn, Lange Medical Publications, Los Altos, CA.Google Scholar
  44. 42.
    Gottesman S, P Trisler and A Torres-Cabassa. 1985. Regulation of capsular polysaccharide synthesis inEscherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162: 1111–1119.PubMedGoogle Scholar
  45. 43.
    Haaheim LR, G Kleppe and IW Sutherland. 1989. Monoclonal antibodies reacting with exopolysaccharide xanthan fromXanthomonas campestris. J Gen Microbiol 135: 605–612.PubMedGoogle Scholar
  46. 44.
    Hammond SM, PA Lambert and AN Rycroft. 1984. The Bacterial Cell Surface. Croon Helm Ltd, Kent, UK.Google Scholar
  47. 45.
    Harder W and L Dijkhuizen. 1983. Physiological responses to nutrient limitation. Ann Rev Microbiol 3: 1–23.Google Scholar
  48. 46.
    Howard JG. 1987. T-independent responses to polysaccharides: their nature and delayed ontogeny. In: Towards Better Carbohydrate Vaccines (Bell R and G Torrigiani, eds), pp 221–231, John Wiley and Sons, London.Google Scholar
  49. 47.
    Hungerer D, K Jann, F Orskov and I Orskov. 1967. Immunochemistry of K antigens ofEscherichia coli 4. The K antigens ofE. coli O 9∶K 30H∶12. Eur J Biochem 2: 115–126.PubMedGoogle Scholar
  50. 48.
    Issac DH. 1985. Bacterial polysaccharides. In: Polysaccharides Topics in Structure and Morphology (Atkins EDT, ed), pp 141–184, The Macmillan Press, London.Google Scholar
  51. 49.
    Jann K and O Westphal. 1975. Microbial polysaccharides. In: The Antigens (Sela M, ed), pp 1–110, vol 3, Academic Press, New York, San Francisco and London.Google Scholar
  52. 50.
    Jannsson PE, L Kenne, B Lindberg, H Ljunnggren, U Ruden and S Svennsson. 1977. Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide ofRhizobium meliloti by sequential degradation. J Am Chem Soc 99: 3812–3815.PubMedGoogle Scholar
  53. 51.
    Jarman TR, L Deavin, S Slocombe and RC Righelato. 1978. Investigation of the effect of environmental conditions on the rate of exopolysaccharide synthesis inAzotobacter vinelandii. J Gen Microbiol 107: 59–64.Google Scholar
  54. 52.
    Kabat EA. 1976. Structural Concepts in Immunology and Immunohistochemistry. Holt, Rhinehart and Winston, New York.Google Scholar
  55. 53.
    Kabat EA. 1966. The nature of an antigenic determinant. J Immunol 97: 1–11.PubMedGoogle Scholar
  56. 54.
    Kabat EA and AE Bezer. 1958. The effect of variation in molecular weight on the antigenicity of dextran in man. Arch Biochem Biophys 78: 306–318.PubMedGoogle Scholar
  57. 55.
    Kayhty H. 1985. Antibody response to bacterial surface components. In: Enterobacterial Surface Antigens: Methods for Molecular Characterization (Korhonen TK, EA Dawes and PH Makela, eds), pp 91–108, Elsevier Sci Pub Co, NY.Google Scholar
  58. 56.
    Kenne L and B Lindberg. 1983. Bacterial polysaccharides. In: The Polysaccharides, vol 2 (Aspinall GO, ed), Academic Press, New York.Google Scholar
  59. 57.
    Kerby GPA. 1950. A comparison of the removal of mucoid and nonmucoid variants ofKlebsiella pneumonia type B from the splanchnic circulating blood of the intact animal. J Immunol 64: 131–137.PubMedGoogle Scholar
  60. 58.
    Kingsley M, D Gabriel, G Marlow and P Roberts. 1993. The opsX locus ofXanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide. J Bacteriol 157: 5839–5850.Google Scholar
  61. 59.
    Kirchman DL, DS Graham, D. Reis and R Mitchell. 1983. Lectins may mediate in the settlement and metamorphosis ofJanua (Dexiospira) brasiliensis (grube). Mar Biol Lett 3: 1–12.Google Scholar
  62. 60.
    Kirchman DL, DS Graham, D Reis and R Mitchell. 1982. Bacteria induce settlement and metamorphosis ofJanua (Dexiospira) brasiliensis (grube). J Exp Mar Biol Ecol 56: 153–163.Google Scholar
  63. 61.
    Kjelleberg S, BA Humphrey and KC Marshall. 1982. Effect of interfaces on small, starved marine bacteria. Appl Environ Microbiol 43: 1166–1172.Google Scholar
  64. 62.
    Kjelleberg S and M Hermansson. 1984. Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol 48: 497–503.Google Scholar
  65. 63.
    Labare M, K Guthrie and R Weiner. 1989. Polysaccharide exopolymer from periphytic marine bacteria. J Adhesion Sci Technol 3: 213–223.Google Scholar
  66. 64.
    Leigh JA, ER Signer and GC Walker. 1985. Exopolysaccharide-deficient mutants ofRhizobium meliloti that form inefficient nodules. Proc Natl Acad Sci USA 82: 6231–6234.PubMedGoogle Scholar
  67. 65.
    Lifely RM, U Norwicka and C Moreno. 1986. Analysis of the chain length of oligomers and polymers of sialic acid isolated fromNeiserria meningitidis group B and C andEscherichia coli K1 and K92. Carbohydr Res 156: 123–135.PubMedGoogle Scholar
  68. 66.
    Lindberg B, J Lonngren and S Svensson. 1975. Specific degradation of polysaccharides. In: Advances in Carbohydrate Chemistry and Biochemistry, vol 31 (Tipson S and D Horton, eds), pp 185–240, Academic Press, New York.Google Scholar
  69. 67.
    Lion LW, KM Schuler, KM Hsieh and WC Ghiorse. 1988. Trace metal interactions with microbial biofilms in natural and engineered systems. CRC Crit Rev Environ Control 17: 273–306.Google Scholar
  70. 68.
    Lippincott JA, BB Lippincott and JJ Scott. 1984. Adherence and host recognition inAgrobacterium infection. In: Current Perspectives in Microbial Ecology (Klug MJ and CN Reddy, eds), Am Soc Microbiol, Washington, DC.Google Scholar
  71. 69.
    Lis H and N Sharon. 1986. Lectins as molecules and as tools. Ann Rev Biochem 55: 35–67.PubMedGoogle Scholar
  72. 70.
    Loeb GI. 1985. Properties of non-biological surfaces and their characterization. In: Bacterial Adhesion (Savage D and M Fletcher, eds), pp 111–129, Plenum Press, NY.Google Scholar
  73. 71.
    Lui T-Y, EC Gotschlich, W Egan and JB Robbins. 1977. Sialic acid-containing polysaccharides ofNeisseria meningitidus andEscherichia coli strain BOS-12: structure and immunology. J Infect Dis 136: S71-S77.PubMedGoogle Scholar
  74. 72.
    Macleod CM, RG Hodges, M Heidelberger and B Robinson. 1946. Antibody formation in volunteers following injection of pneumococci or their type-specific polysaccharides. J Exp Med 83: 303–320.Google Scholar
  75. 73.
    Macleod CM and MR Krauss. 1950. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J Exp Med 92: 1–9.PubMedGoogle Scholar
  76. 74.
    Marshall KC. 1985. Mechanisms of bacterial adhesion at solid-water interfaces. In: Bacterial Adhesion (Savage D and M Fletcher, eds), pp 133–160, Plenum Press, NY.Google Scholar
  77. 75.
    Marshall KC (ed). 1984. Microbial Adhesion and Aggregation. Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo.Google Scholar
  78. 76.
    Marshall KC. 1988. Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Can J Microbiol 34: 503–506.Google Scholar
  79. 77.
    Marshall KD, R Stout and R Mitchell. 1971. Selective sorption of bacteria from seawater. Can J Microbiol 17: 1413–1416.PubMedGoogle Scholar
  80. 78.
    Meissener J, N Pfennig, JH Krauss, H Mayer and J Weckesser. 1988. Lipopolysaccharides ofThiocystis violacea, Thiocapsa pfennig andChromatium tepidum, species of the familyChromatiaceae. J Bacteriol 170: 3217–3222.PubMedGoogle Scholar
  81. 79.
    Mian FA, TR Jarman and RC Righelato. 1978. Biosynthesis of exopolysaccharide byPseudomonas aeruginosa. J Bacteriol 134: 418–422.PubMedGoogle Scholar
  82. 80.
    Moreno C. 1987. Carbohydrates as immunogens and tolerogens, antibody vs cell mediate immune responses. In: Towards Better Carbohydrate Vaccines (Bell R and G Torrigiani, eds), pp 262–277, John Wiley and Sons, London.Google Scholar
  83. 81.
    Morgan P and CS Dow. 1986. Bacterial adaptations for growth in low nutrient environments. In: Microbes in Extreme Environments (Herbert RA and GA Codd, eds), pp 187–214, Society for General Microbiology Publication #17, Academic Press, London, Orlando.Google Scholar
  84. 82.
    Mulford CA and MJ Osborn. 1983. An intermediate step in translocation of lipopolysaccharide to the outer membrane ofSalmonella typhimurium. Proc Natl Acad Sci USA 80: 1159–1163.PubMedGoogle Scholar
  85. 83.
    Okuyawa K, S Arnott, RM Moorhouse, MD Walkinshaw, EDT Atkins and C Wolf-Ullish. 1980. Am Chem Soc Symp Ser 141: 411–419.Google Scholar
  86. 84.
    Oliveira D. 1992. Physico-chemical aspects of adhesion. In: Biofilms—Science and Technology (Melo R et al, eds), pp 45–58, Kluver Academic Publishers, Boston.Google Scholar
  87. 85.
    Ong C, M Wong and J Smit. 1990. Attachment of the adhesive hold-fast organelle to the cellular stalk ofCaulobacter crescentus. J Bacteriol 172: 1448–1456.PubMedGoogle Scholar
  88. 86.
    Opal S, A Cross and P Gemski. 1982. K antigen and serum sensitivity of roughEscherichia coli. Infect Immun 37: 956–960.PubMedGoogle Scholar
  89. 87.
    Ophir T and DL Gutnick. 1994. A role of exopolysaccharide in the protection of microorganisms from dessication. Appl Environ Microbiol 60: 740–745.Google Scholar
  90. 88.
    Osborn MJ. 1984. Biogenesis of the bacterial outer membrane ofSalmonella. Harvey Lect Ser 78: 87–103.Google Scholar
  91. 89.
    Parker CT, AW Kloser, CA Schnaitman, MA Stein, S Gottesman and BW Gibson. 1992. Role ofrfo G and rfa P genes in determining the lipopolysaccharide core structure and cell surface properties ofEscherichia coli K-12. J Bacteriol 174: 2525–2538.PubMedGoogle Scholar
  92. 90.
    Patchett RA, AF Kelly and RG Kroll. 1991. The adsorption of bacteria to immobilized lectins. J Appl Bacteriol 71: 277–284.PubMedGoogle Scholar
  93. 91.
    Peeters CCAM, D Everberg, P Hoogerhout, H Kayhty, L Soarinen, CAA van Boeckel, GA van der Marel, JH van Boom and JT Poolman. 1992. Synthetic trimer and tetramer of 3-β-d-ribose-(1-1)-d-ribitol-S-phosphate conjugated to protein induce monkeys. Infect Immun 60: 1826–1833.PubMedGoogle Scholar
  94. 92.
    Perez GI, JA Hopkins and MJ Blaser. 1985. Antigenic heterogeneity of lipopolysaccharides fromCampylobacter jejuni andCampylobacter fetus. Infect Immun 48: 528–533.PubMedGoogle Scholar
  95. 93.
    Poindexter J. 1981. The caulobacters: ubiquitous, unusual bacteria. Microbiol Rev 45: 155–170.Google Scholar
  96. 94.
    Politis DJ and RN Goodman. 1980. Fine sructure of the extracellular polysaccharide ofErwinia amylovora. Appl Environ Microbiol 40: 596–604.Google Scholar
  97. 95.
    Pueppke SG. 1984. Adsorption of bacteria to plant surfaces. In: Microbe Interactions: Molecular Genetic Perspectives (Kosuge T and EW Nester, eds), Macmillan Press, New York.Google Scholar
  98. 96.
    Raschke WC and CE Ballou. 1972. Characterization of a yeast mannan containingN-acetyl-d-glucosamine as an immunochemical determinant. Biochemistry 11: 3807–3816.PubMedGoogle Scholar
  99. 97.
    Rehm BHA, G Boheim, J Tommassen and UK Winkler. 1994. Overexpression ofalg E inEscherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176: 5639–5647.PubMedGoogle Scholar
  100. 98.
    Roberts I, R Mountford, N High, D Bitter-Suermann, K Jann, K Timmis and G Boulnois. 1986. Molecular cloning and analysis of genes for production of K5, K7, K12, and K92 capsular polysaccharides inEscherichia coli. J Bacteriol 168: 1228–1233.PubMedGoogle Scholar
  101. 99.
    Rohr TA and FA Troy. 1980. Structure and biosynthesis of surface polymers containing polysialic acid inEscherichia coli. J Biol Chem 255: 2332–2342.PubMedGoogle Scholar
  102. 100.
    Sar N and E Rosenberg. 1988. Fish skin bacteria: production of friction-reducing polymers. Microbial Ecol 17: 27–38.Google Scholar
  103. 101.
    Savage DC and MH Fletcher (eds). 1985). Bacterial Adhesion: Mechanisms and Physiological Significance. Plenum Press, New York.Google Scholar
  104. 102.
    Schwarzmann S and JR Boring III. 1971. Antiphagocytic effect of slime from a mucoid strain ofPseudomonas aeruginosa. Infect Immun 3: 762–767.Google Scholar
  105. 103.
    Silver RP, W Aaronson and WF Vann. 1987. Translocation of capsular polysaccharides in pathogenic strains ofEscherichia coli requires a 60-kilodalton periplasmic protein. J Bacteriol 169: 5489–5495.PubMedGoogle Scholar
  106. 104.
    Silverman M and M Simon. 1983. Phase variation and related systems. In: Mobile Genetic Elements (Shapiro JA, ed), pp 537–557, Academic Press, New York.Google Scholar
  107. 105.
    Skerman TM. 1956. The nature and development of primary films on submerged surfaces in the sea. N Zealand J Sci Technol B 38: 44–57.Google Scholar
  108. 106.
    Sledjeski D. 1990. Investigation ofShewanella colwelliana exopolysaccharide using monclonal antibody probes. Doctoral Dissertation, 205 pp, U MD library Col Pk, MD.Google Scholar
  109. 107.
    Sledjeski D and R Weiner. 1993. Production and characterization of monoclonal antibodies specific forShewanella colwelliana exopolysaccharides. Appl Environ Microbiol 59: 1565–1572.PubMedGoogle Scholar
  110. 108.
    Smith HW and MB Huggins. 1980. The association of the O18, K1 and H7 antigens and the ColV plasmid of a strain ofEscherichia coli with its virulence and immunogenicity. J Gen Microbiol 121: 387–400.PubMedGoogle Scholar
  111. 109.
    Stenstrom TA. 1989. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl Environ Microbiol 55: 142–147.PubMedGoogle Scholar
  112. 110.
    Stout V and S Gottesman. 1990. RcsB and RcsC: a two-component regulator of capsule synthesis inEscherichia coli. J Bacteriol 172: 659–669.PubMedGoogle Scholar
  113. 111.
    Sutherland IW. 1972. Bacterial exopolysaccharides. Adv Microb Physiol 8: 143–213.PubMedGoogle Scholar
  114. 112.
    Sutherland IW. 1982. Biosynthesis of microbial exopolysaccharides. In: Advances in Microbial Physiology, vol 23 (Rose AH and JG Morris, eds), Academic Press, New York.Google Scholar
  115. 113.
    Sutherland IW. 1983. Microbial exopolysaccharides—their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol 10: 173–219.Google Scholar
  116. 114.
    Swanson J, S Bergstrom, K Robbins, O Barrera, D Corwin and JM Koomey. 1985. Gene conversion involving the pilin structural gene correlates with pilus+-pilus changes inNeisseria gonorrhoea. Cell 47: 267–276.Google Scholar
  117. 115.
    Tempest DW and OM Neijssel. 1981. Metabolic compromises involved in the growth of microorganisms in nutrient-limited (chemostat) environments. In: Basic Life Sciences, vol 18. Trends in the Biotechnology of Fermentations for Fuels and Chemicals (Hollaender A, ed), pp 335–356, Plenum Press, New York and London.Google Scholar
  118. 116.
    Torres-Cabassa AS and S Gottesman. 1987. Capsule synthesis inEscherichia coli K-12 is regulated by proteolysis. J Bacteriol 169: 981–989.PubMedGoogle Scholar
  119. 117.
    Troy FA II. 1979. The chemistry and biosynthesis of selected bacterial capsular polymers. Ann Rev Microbiol 33: 519–560.Google Scholar
  120. 118.
    Troy FA, FE Frerman and EC Heath. 1971. The biosynthesis of capsular polysaccharide inAerobacter aerogenes. J Biol Chem 246: 118–133.PubMedGoogle Scholar
  121. 119.
    Tsien HC and EL Schmidt. 1977. Polarity in the exponential-phaseRhizobium japonicum cell. Can J Microbiol 23: 1274–1284.PubMedGoogle Scholar
  122. 120.
    Tsien HC and EL Schmidt. 1981. Localization and partial characterization of soybean lectin-binding polysaccharide ofRhizobium japonicum. J Bacteriol 145: 1063–1074.PubMedGoogle Scholar
  123. 121.
    Tsunashima Y, K Moro and B Chu. 1978. Characterization of group C meningococcal polysaccharide by light-scattering spectroscopy. III. Determinant of molecular weight. Biopolymers 17: 251–265.PubMedGoogle Scholar
  124. 122.
    Umbreit T and J Pate. 1978. Characterization of the holdfast region of wild-type cells and holdfast mutants ofAsticcacaulis biprosthecum. Arch Microbiol 118: 157–168.Google Scholar
  125. 123.
    Vreeland V, E Zablackis and WM Laetsch. 1988. Monoclonal antibodies to carrageenan. In: Algal Biotechnology (Stadler T, ed), Elsevier Applied Science, London and New York.Google Scholar
  126. 124.
    Wali RM, GR Hudson, DA Danald and RM Weiner. 1980. Timing of swarmer cell cycle morphogenesis and macromolecular synthesis byHyphomicrobium neptunium in synchronous culture. J Bacteriol 144: 406–412.PubMedGoogle Scholar
  127. 125.
    Wardell JN, CM Brown and B Flannigan. 1983. Microbes and surfaces. In: Microbes in Their Natural Environments (Slater JH, R Whittenbury and JWT Wimpenny, eds), Cambridge Univ Press, London, New York, and Sydney.Google Scholar
  128. 126.
    Weiner RM, RA Devine, DM Powell, L Dagasan and RL Moore. 1985.Hyphomonas oceanitis sp nov,Hyphomonas hirschiana sp nov, andHyphomonas jannaschiana sp nov. Int J Syst Bacteriol 35: 237–243.Google Scholar
  129. 127.
    Weller PE, AL Smith, P Anderson and DH Smith. 1977. The role of encapsulation and host age in the clearance ofHaemophilus influenzae bacteremia. J Infect Dis 135: 34–41.PubMedGoogle Scholar
  130. 128.
    Wilkinson JF. 1958. The exocellular polysaccharides of bacteria. Bacteriol Rev 22: 46–73.PubMedGoogle Scholar
  131. 129.
    Williams AG and JWT Wimpenny. 1977. Exopolysaccharide production byPseudomonas NCIB11264 grown in batch culture. J Gen Microbiol 102: 13–21.PubMedGoogle Scholar
  132. 130.
    Williams TM, RF Unz and JT Doman. 1987. Ultrastructure ofThiothrix spp and ‘type 021N’ bacteria. Appl Environ Microbiol 53: 1560–1570.Google Scholar
  133. 131.
    Wozniak DJ and DE Ohman. 1994. Transcriptional analysis of thePseudomonas aeruginosa genesalg R,alg D reveals a hierarchy of alginate gene expression which is modulated byalg T. J Bacteriol 176: 6007–6014.PubMedGoogle Scholar
  134. 132.
    Wrangstadh M, PL Conway and S Kjelleberg. 1988. The role of an extracellular polysaccharide produced by the marinePseudomonas sp S9 in cellular detachment during starvation. Can J Microbiol 35: 309–312.Google Scholar
  135. 133.
    Wrangstadh M, PL Conway and S Kjelleberg. 1986. The production and release of an extracellular polysaccharide during starvation of a marinePseudomonas sp and the effect thereof on adhesion. Arch Microbiol 145: 220–227.PubMedGoogle Scholar
  136. 134.
    Wrangstadh M, U Szewzyk, J Ostling and S Kjelleberg. 1990. Starvation-specific formation of a peripheral exopolysaccharide by a marinePseudomonas sp, strain S9. Appl Environ Microbiol 56: 2065–2072.PubMedGoogle Scholar
  137. 135.
    Wright A, M Dankert and PW Robbins. 1965. Evidence for an intermediate stage in the biosynthesis of the salmonellaO-antigen. Proc Natl Acad Sci USA 54: 235–241.PubMedGoogle Scholar
  138. 136.
    Wu AM and S Sugii. 1991. Coding and classification ofd-galactose,N-acetyl-d-galactosamine, and β-d-Galp-[1→3(4)]-β-d-GlcpNAc, specificities of applied lectins. Carbohydrate Res 213: 127–143.Google Scholar
  139. 137.
    Yu AK and NK Kochetkov. 1987. 2,3-diamino-2, 3,-dideoxyuronic and 5,7-diamino, 3, 5, 7, 9-tetradeoxynonulosonic acids: new components of bacterial polysaccharides. FEMS Microbiol Lett 46: 381–385.Google Scholar
  140. 138.
    Zambon JJ, PS Huber, AE Mayer, J Slots, MS Fornalk and RE Baier. 1984.In situ identification of bacterial species in marine microfouling films by usinng an immunofluorescence technique. Appl Environ Microbiol 48: 1214–1220.PubMedGoogle Scholar
  141. 139.
    Zobell CE and EC Allen. 1935. The significance of marine bacteria in the fouling of submerged surfaces. J Bacteriol 29: 230–251.Google Scholar
  142. 140.
    Zobell CE and DQ Anderson. 1936. Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biolog Bull 71: 324–342.Google Scholar

Copyright information

© Society for Industrial Microbiology 1995

Authors and Affiliations

  • R Weiner
    • 1
  • S Langille
    • 1
  • E Quintero
    • 1
  1. 1.Department of MicrobiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations