Journal of Industrial Microbiology

, Volume 16, Issue 1, pp 22–28 | Cite as

Xanthomonas campestris as a host for the production of recombinantPseudomonas aeruginosa lipase

  • A Leza
  • B Palmeros
  • J O García
  • E Galindo
  • G Soberón-Chávez
Article

Abstract

Recombinant plasmid pBP13, which expresses the alkaline lipase fromPseudomonas aeruginosa IGB83 under thetac promoter was transferred toXanthomonas campestris pvcampestris IBT148. Different fermentation conditions were tested for lipase productivity by strain IBT148 carrying plasmid pBP13, and a fermentation process was established in an instrumented bioreactor, where lipase production was increased more than 12-fold with respect to the initial culture conditions in shake flasks. Xanthan gum stabilized the activity of the alkaline lipase.

Keywords

lipase recombinantXanthomonas fed-batch bioreactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagdasarian MM, E Amann, R Lurz, B Ruckert and M Bagdasarian. 1983. Activity of the hybridtrp-lac (tac) promotor ofEscherichia coli inPseudomonas putida. Construction of broad-host-range, controlled-expression vector. Gene 26: 273–282.PubMedGoogle Scholar
  2. 2.
    Björkling F, SE Godtfresen and O Kirk. 1991. The future impact of industrial lipases. Trends Biotechnol 9: 360–363.Google Scholar
  3. 3.
    Boyer HB and D Roulland-Dussoix. 1969. A complementation analysis of the restriction and modification of DNA inEscherichia coli. J Mol Biol 41: 459–472.PubMedGoogle Scholar
  4. 4.
    Brewin NJ, JE Beringer and AWB Johnston. 1980. Plasmid-mediated transfer of host range specificity between two strains ofRhizobium leguminosarum. J Gen Microbiol 120: 413–420.Google Scholar
  5. 5.
    Daniels MJ, CE Barber, PC Turner, WG Clearly and MK Sawczyc. 1984. Isolation of mutants ofXanthomonas campestris pvcampestris showing altered pathogenicity. J Gen Microbiol 130: 2447–2450.Google Scholar
  6. 6.
    de Groot A, A Filloux and J Tommassen. 1991. Conservation ofxcp genes, involved in the two-step protein secretion process in differentPseudomonas species and in other gram-negative bacteria. Mol Gen Genet 229: 278–284.PubMedGoogle Scholar
  7. 7.
    Dow JM, BR Clarke, DE Milligan, JL Tang and MJ Daniels. 1990. Extracellular proteases fromXanthomonas campestris pvcampestris, the black rot pathogen. Appl Environ Microbiol 56: 2994–2998.PubMedGoogle Scholar
  8. 8.
    Dums F, JM Dow and MJ Daniels 1991. Structural characterization of protein secretion genes of the bacterial phytopathogenXanthomonas campetris pathovarcampestris: relatedness to secretion systems of other gram-negative bacteria. Mol Gen Genet 229: 357–364.PubMedGoogle Scholar
  9. 9.
    Flores JF, LG Torres and E Galindo. 1994. Effect of dissolved oxygen tension during cultivation ofX. campestris on the production and quality of xanthan gum. J Biotechnol 34: 165–173.Google Scholar
  10. 10.
    Friehs K and KF Reardon. 1993. Parameters, influencing the productivity of recombinantE. coli cultivations. Adv Biochem Eng 48: 53–75.Google Scholar
  11. 11.
    Galindo E. 1994. Aspects of the process for xanthan production. Trans I Chem E (c) 72: 227–237.Google Scholar
  12. 12.
    Galindo E, F Bolivar and R Quintero. 1990. Maximizing the expression of recombination proteins inEscherichia coli by manipulation of culture conditions. J Fermen Bioeng 69: 1–6.Google Scholar
  13. 13.
    Gilbert EJ. 1993.Peudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb Technol 15: 634–645.PubMedGoogle Scholar
  14. 14.
    Harwood J. 1989. The versatility of industrial lipases. Trends Biochem 14: 125–127.Google Scholar
  15. 15.
    Jaeger K-E, S Ransac, BW Dijikstra, C Colson, M van Heuvel and O Misset. 1994. Bacterial lipases. FEMS Microbiol Rev 15: 29–63.PubMedGoogle Scholar
  16. 16.
    Marcin C, L Katz, R Greashman and M Chartrain. 1993. Optimization of lipase production byPseudomonas aeruginosa MB 5001 in batch cultivation. J Ind Microbiol 12: 29–34.Google Scholar
  17. 17.
    Martínez S, JM Martínez-Salazar and G Soberón-Chávez. 1995. Isolation ofXanthomonas campestris pvcampestris NRRL B1459recA mutants and evaluation of the role of RecA protein on the genetic switch affecting chemotaxis and xanthan gum production. Microbiology (submitted).Google Scholar
  18. 18.
    Martínez-Salazar JM, AN Palacios, R Sánchez, AD Caro and G Soberón-Chávez. 1993. Genetic stability and xanthan gum production inXanthomonas campestris pvcampestris NRRL B1459. Mol Microbiol 8: 1053–1061.PubMedGoogle Scholar
  19. 19.
    Miller JH. 1992. A short course on bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York.Google Scholar
  20. 20.
    Olson GJ, CR Woese and R Overbeek. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176: 1–6.PubMedGoogle Scholar
  21. 21.
    Oschsner UA, A Fiechter and J Reiser. 1994. Isolation, characterization and expression inEscherichia coli of thePseudomonas aeruginosa rhIAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269: 19787–19795.PubMedGoogle Scholar
  22. 22.
    Palmeros B, L Güereca, A Alagón and G Soberón-Chávez. 1994. Biochemical characterization of the lipolytic activity ofPseudomonas aeruginosa IGB83. Process Biochem 29: 207–212.Google Scholar
  23. 23.
    Peters HU, H Herbst, PGM Hasselink, A Schumpe and WD Deckwer. 1989. The influence of agitation rate on xanthan gum production byXanthomonas campestris. Biotechnol Bioeng 34: 431–435.Google Scholar
  24. 24.
    Pugsley AP. 1993. The complete general secretory pathway in gramnegative bacteria. Microbiol Rev 57: 50–108.PubMedGoogle Scholar
  25. 25.
    Ramírez ME, L Fucikovsky, F García-Ramírez, R Quintero and E Galindo. 1988. Xanthan gum production by altered pathogenicity variants ofXanthomonas campestris. Appl Microbiol Biotechnol 29: 5–10.Google Scholar
  26. 26.
    Rosenberg C, F Casse-Delbart, I Dusha, M David and C Boucher. 1982. Megaplasmid in the plant-associated bacteriaRhizobium meliloti andPseudomonas solanacearum. J Bacteriol 150: 402–406.PubMedGoogle Scholar
  27. 27.
    Sambrook J, EF Fritsch and T Maniatis. 1989. Molecular Cloning. A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  28. 28.
    Sano Y and M Kageyama. 1987. The sequence and function of therecA gene and its protein inPseudomonas aeruginosa PAO. Mol Gen Genet 208: 412–419.PubMedGoogle Scholar
  29. 29.
    Schein CH. 1990. Solubility as a function of protein structure and solvent components. Bio/Technology 8: 308–317.PubMedGoogle Scholar
  30. 30.
    Schulte G, L Bohne and UK Winkler. 1982. Glycogen and various other polysaccharides stimulate the formation of exolipase byPseudomonas aeruginosa. Can J Microbiol 28: 636–642.PubMedGoogle Scholar
  31. 31.
    Soberón-Chávez G and B Palmeros. 1994.Pseudomonas lipases: molecular genetics and potential industrial applications. Crit Rev Microbiol 20: 95–105.PubMedGoogle Scholar
  32. 32.
    Soberón-Chávez G. 1995. Process to obtain extracellular recombinant products usingXanthomonas campestris pvcampestris as host. Universidad Nacional Autónoma de México. US Patent No 5443980.Google Scholar
  33. 33.
    Suzuki T, Y Mushiga, T Yamane and S Shimizu. 1988. Mass production of lipase by fed-batch culture ofPseudomonas fluorescens. Appl Microbiol Biotechnol 27: 417–422.Google Scholar
  34. 34.
    Tommassen J, A Filloux, M Bally, M Murgier and A Lazdunski. 1992. Protein secretion inPseudomonas aeruginosa. FEMS Microbiol Rev 103: 73–90.Google Scholar
  35. 35.
    Wingender J, S Volz and UK Winkler. 1987. Interaction of extracellularPseudomonas lipase with alginate and its potential use in biotechnology. Appl Microbiol Biotechnol 27: 139–145.Google Scholar
  36. 36.
    Yee L and HW Blanch. 1992. Recombinant protein expression in high cell density fed-batch cultures ofE. coli. Bio/Technology 10: 1550–1556.PubMedGoogle Scholar
  37. 37.
    Zabriskie DW and J Arcuri. 1986. Factors influencing productivity of fermentations employing recombinant microorganisms. Enzyme Microb Technol 8: 706–717.Google Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • A Leza
    • 1
  • B Palmeros
    • 1
  • J O García
    • 2
  • E Galindo
    • 2
  • G Soberón-Chávez
    • 1
  1. 1.Departamento de Microbiologia Molecular Instituto de BiotecnologiaUniversidad Nacional Autónoma de MéxicoCuemavacaMexico
  2. 2.Departamento de Bioingeniería Instituto de BiotecnologiaUniversidad Nacional Autónoma de MéxicoCuemavacaMexico

Personalised recommendations