Journal of Industrial Microbiology

, Volume 14, Issue 2, pp 186–199 | Cite as

Ion efflux systems involved in bacterial metal resistances

  • Dietrich H. Nies
  • Simon Silver


Studying metal ion resistances gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for ‘cation diffusion facilitator’ has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacteriumAlcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined.

Key words

Divalent cations Cadmium Heavy metal resistance genes Bioenergetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bairoch, A. 1993. A possible mechanism for metal-ion induced DNA-protein dissociation in a family of prokaryotic transcriptional regulators. Nucl. Acids Res. 21: 2515.PubMedGoogle Scholar
  2. 2.
    Bennett, R.L. and M.H. Malamy. 1970. Arsenate-resistant mutants ofEscherichia coli and phosphate transport. Biochem. Biophys. Res. Comm. 40: 490–503.Google Scholar
  3. 3.
    Bröer, S., G. Ji, A. Bröer and S. Silver. 1993. Arsenic efflux governed by the arsenic resistance determinant ofStaphylococcus aureus plasmid p1258. J. Bacteriol. 175: 3480–3485.PubMedGoogle Scholar
  4. 4.
    Bucheder, F. and E. Broda. 1974. Energy-dependent zinc transport byEscherichia coli. Eur. J. Biochem. 45: 555–559.PubMedGoogle Scholar
  5. 5.
    Bull, P.C. and D.W. Cox. 1994. Wilson disease and Menkes disease: new handles on heavy metal transport. Trends Genet. 10: 246–252.PubMedGoogle Scholar
  6. 6.
    Bull, P.C., G.R. Thomas, J.M. Rommens, J.R. Forbes and D.W. Cox. 1993. The Wilson Disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature (Genetics) 5: 327–337.Google Scholar
  7. 7.
    Cervantes, C., H. Ohtake, L. Chu, T.K. Misra and S. Silver. 1990. Cloning, nucleotide sequence, and expression of the chromate resistance determinant ofPseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291.Google Scholar
  8. 8.
    Chelly, J., Z. Tumer, T. Tonnesen, A. Petterson, Y. Ishikawabrush, N. Tommerup, N. Horn and A.P. Monaco. 1993. Isolation of a candidate gene for Menkes' disease that encodes a potential heavy metal binding protein. Nature (Genetics) 3: 14–19.Google Scholar
  9. 9.
    Chen, C.-M., T.P. Misra, S. Silver and B.P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump. J. Biol. Chem. 261: 15030–15038.PubMedGoogle Scholar
  10. 10.
    Collard, J.-M., A. Provoost, S. Taghavi and M. Mergeay. 1993. A new type ofAlcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of thecnr cobalt-nickel resistance system. J. Bacteriol. 175: 779–794.PubMedGoogle Scholar
  11. 11.
    Conklin, D.S., J.A. McMaster, M.R. Culbertson and C. Kung. 1992. COT1, a gene involved in cobalt accumulation inSaccharomyces cerevisiae. Mol. Cell Biol. 12: 3678–3688.PubMedGoogle Scholar
  12. 12.
    Corbisier, P., G. Nuyts, G. Ji, M. Mergeay and S. Silver. 1993.luxAB gene fusions with the arsenic and cadmium resistance operons ofStaphylococcus aureus plasmid pl258. FEMS Microbiol. Lett. 110: 231–238.PubMedGoogle Scholar
  13. 13.
    Dressler, C., U. Kues, D.H. Nies and B. Friedrich. 1991. Determinants encoding multiple metal resistance in newly isolated copper-resistant bacteria. Appl. Environ. Microbiol. 57: 3079–3085.Google Scholar
  14. 14.
    Elvin, C.M., C.M. Hardy and H. Rosenberg. 1987. Molecular studies on the phosphate inorganic transport system ofEscherichia coli. In: Phosphate Metabolism and Cellular Regulation in Micro-organisms (Torriani-Gorini, A., F.G. Rothmann, S. Silver, A. Wright and E. Yagil, eds), pp. 156–158, American Society for Microbiology, Washington, DC.Google Scholar
  15. 15.
    Eriksson, P.-O. and L. Sahlman. 1993.1H NMR studies of the mercuric ion binding protein MerP: sequential assignment secondary structure and global fold of oxidized MerP. J. Biomolec. NMR 3: 613–626.Google Scholar
  16. 16.
    Fagan, M.J. and M.H. Saier, Jr. 1994. P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. J. Mol. Evol. 38: 57–99.PubMedGoogle Scholar
  17. 17.
    Fath, M.J. and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 995–1017.PubMedGoogle Scholar
  18. 18.
    Gladysheva, T.B., K.L. Oden and B.P. Rosen. 1994. The ArsC arsenate reductase of plasmid R773. Biochemistry 33: 7288–7293.PubMedGoogle Scholar
  19. 19.
    Harold, F.M. and J.R. Baarda. 1966. Interaction of arsenate with phosphate-transport systems in wild type and mutantStreptococcus faecalis. J. Bacteriol. 91: 2257–2262.PubMedGoogle Scholar
  20. 20.
    Hsu, C. M., P. Kaur, R.F. Steiner and B.P. Rosen. 1991. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 266: 2327–2332.PubMedGoogle Scholar
  21. 21.
    Ji, G., E.A.E. Garber, L.G. Armes, C.-M. Chen, J.A. Fuchs and S. Silver. 1994. Arsenate reductase ofStaphylococcus aureus plasmid pl258: kinetics and spectroscopy. Biochemistry 33: 7294–7299.PubMedGoogle Scholar
  22. 22.
    Ji, G. and S. Silver. 1992. Regulation and expression of the arsenic resistance operon fromStaphylococcus aureus plasmid pl258. J. Bacteriol. 174: 3684–3694.PubMedGoogle Scholar
  23. 23.
    Ji, G. and S. Silver. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon ofStaphylococcus aureus plasmid pl258. Proc. Natl. Acad. Sci. USA 89: 7974–7978.Google Scholar
  24. 24.
    Kaback, H.R. 1988. Site-directed mutagenesis and ion-gradient driven active transport: on the path of the proton. Annu. Rev. Physiol. 50:243–256.PubMedGoogle Scholar
  25. 25.
    Kamizomo, A., M. Nishizawa, Y. Teranishi, K. Murata and A. Kimura. 1989. Identification of a gene conferring resistance to zinc and cadmium in the yeastSaccharomyces cerevisiae. Mol. Gen. Genet. 219: 161–167.PubMedGoogle Scholar
  26. 26.
    Karkaria, C.E. and B.P. Rosen. 1991. Trinitrophenyl-ATP binding to the ArsA protein—the catalytic subunit of an anion pump. Arch. Biochem. Biophys. 288: 107–111.PubMedGoogle Scholar
  27. 27.
    Kaur, P. and B.P. Rosen. 1992. Mutagenesis of the C-Terminal nucleotide-binding site of an anion-translocating ATPase. J. Biol. Chem. 267: 19272–19277.PubMedGoogle Scholar
  28. 28.
    Kaur, P. and B.P. Rosen. 1993. Complementation between nucleotide binding domains in an anion-translocating ATPase. J. Bacteriol. 175: 351–357.PubMedGoogle Scholar
  29. 29.
    Kaur, P. and B.P. Rosen. vitro assembly of an anionstimulated ATPase from peptide fragments.Google Scholar
  30. 30.
    Kiel, J.A.K.W., J.M. Boels, G. Beldman and G. Venema. 1991. TheglgB gene from the thermophileBacillus caldolyticus encodes a thermolabile branching enzyme. J. DNA Seq. Map 3: 221–232.Google Scholar
  31. 31.
    Kiel, J.A.K.W., J. M. Boels, G. Beldman and G. Venema. 1992. Molecular cloning and nucleotide sequence of the glycogen branching enzyme gene (glgB) fromBacillus stearothermophilus and expression inEscherichia coli andBacillus subtilis. Mol. Gen. Genet. 230: 136–144.Google Scholar
  32. 32.
    Krebs, M.P. and H.G. Khorana. 1993. Mechanism of light-dependent proton translocation by bacteriorhodopsin. J. Bacteriol. 175: 1555–1560.PubMedGoogle Scholar
  33. 33.
    Lebrun, M., A. Audurier and P. Cossart. 1994a. Plasmid-borne cadmium resistance genes inListeria monocytogenes are similar tocadA andcadC ofStaphylococcus aureus and are induced by cadmium. J. Bacteriol. 176: 3040–3048.PubMedGoogle Scholar
  34. 34.
    Lebrun, M., A. Audurier and P. Cossart. 1994b. Plasmid-borne cadmium resistance genes inListeria monocytogenes are present on Tn5422 a novel transposon closely related to Tn917. J Bacteriol. 176:3049–3061.PubMedGoogle Scholar
  35. 35.
    Lewis, K. 1994. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem. Sci. 19: 119–123.PubMedGoogle Scholar
  36. 36.
    Liesegang, H., K. Lemke, R.A. Siddiqui and H.-G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 ofAlcaligenes eutrophus CH34. J. Bacteriol. 175: 767–778.PubMedGoogle Scholar
  37. 37.
    Luecke, H. and F.A. Quiocho. 1990. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature Lond. 347: 402–406.PubMedGoogle Scholar
  38. 38.
    Ma, D., D.N. Cook, M. Albertie, N.G. Pon, H. Nikaido and J.E. Hearst. 1993. Molecular cloning ofacrA andacrE genes ofEscherichia coli. J. Bacteriol. 175: 6299–6313.PubMedGoogle Scholar
  39. 39.
    Maloney, P.C., S.V. Ambudkar, V. Anantharam, L.A. Sonna and Varadhachary. 1990. Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54: 1–17.PubMedGoogle Scholar
  40. 40.
    Marger, M.D. and Saier, M.H. 1993. A major superfamily of transmembrane facilitators catalyzing uniport, symport and antiport. Trends Biochem. Sci. 18: 13–20.PubMedGoogle Scholar
  41. 41.
    Mercer, J.F.B., J. Livingston, B. Hall, J.A. Paynter, C. Begy, S. Chandrasekharappa, P. Lockhart, A. Grimes, M. Bhave, D. Siemieniak and T.W. Glover. 1993. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature (Genetics) 3: 20–25.Google Scholar
  42. 42.
    Mercer, J.F.B., A. Grimes, L. Ambrosini, P. Lockhart, J.A. Paynter, H. Dierick and T.W. Glover. 1994. Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nature (Genetics) 6: 374–378.Google Scholar
  43. 43.
    Mergeay, M., D. Nies, H.G. Schlegel, J. Gerits, P. Charles and F. VanGijsegem. 1985.Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328–334.PubMedGoogle Scholar
  44. 44.
    Mobley, H.L.T. and B.P. Rosen. 1982. Energetics of plasmidmediated arsenate resistance inEscherichia coli. Proc. Natl Acad. Sci. USA 79: 6119–6122.PubMedGoogle Scholar
  45. 45.
    Nakata, A.M., M. Amemura, K. Makimo and H. Shinegawa. 1987. Genetic and biochemical analysis of the phosphate-specific transport system inEscherichia coli. In: Phosphate Metabolism and Cellular Regulation in Microorganisms (Torriani-Gorini, A., F.G. Rothmann, S. Silver, A. Wright and E. Yagil, eds), pp. 150–155, American Society for Microbiology, Washington, DC.Google Scholar
  46. 46.
    Nies, A., D.H. Nies and S. Silver. 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 5065–5070.PubMedGoogle Scholar
  47. 47.
    Nies, A., D.H. Nies and S. Silver. 1990. Nucelotide sequence and expression of a plasmid-encoded chromate resistance determinant fromAlcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653.PubMedGoogle Scholar
  48. 48.
    Nies, D.H. 1992a. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27: 17–28.PubMedGoogle Scholar
  49. 49.
    Nies D.H. 1992b. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) inAlcaligenes eutrophus. J. Bacteriol. 174: 8102–8110.PubMedGoogle Scholar
  50. 50.
    (Reference deleted in proof.)Google Scholar
  51. 51.
    Nies, D.H., M. Mergeay, B. Friedrich and H.G. Schlegel. 1987. Cloning of the plasmid coded resistance to cobalt, zinc, and cadmium fromAlcaligenes eutrophus CH34. J. Bacteriol. 167: 4865–4868.Google Scholar
  52. 52.
    Nies, D.H., A. Nies, L. Chu and S. Silver. 1989. Expression and nucelotide sequence of a plasmid-determined divalent cation efflux system fromAlcaligenes eutrophus. Proc. Natl Acad. Sci. USA 86: 7351–7355.PubMedGoogle Scholar
  53. 53.
    Nies, D.H. and S. Silver. 1989. Metal ion uptake by plasmidfree metal-sensitiveAlcaligenes eutrophus strain. J. Bacteriol. 171: 4073–4075.PubMedGoogle Scholar
  54. 54.
    Nies, D.H. and S. Silver. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 896–900.PubMedGoogle Scholar
  55. 55.
    Novick, R.P. and C. Roth. 1968. Plasmid-linked resistance to inorganic salts inStaphylococcus aureus. J. Bacteriol. 95: 1335–1342.PubMedGoogle Scholar
  56. 56.
    Novick, R.P., R.P. Murphy, T.J. Gryczan, E. Barone and I. Edelman. 1979. Penicillinase plasmids ofStaphylococcus aureus: restriction-deletion maps. Plasmid 2: 109–129.PubMedGoogle Scholar
  57. 57.
    Nucifora, G., L. Chu, T.K. Misra and S. Silver. 1989. Cadmium resistance fromStaphylococcus aureus plasmid, pl258cadA results from a cadmium-efflux ATPase. Proc. Natl Acad. Sci. USA 86: 3544–3548.PubMedGoogle Scholar
  58. 58.
    Oden, K.L., T.B. Gladysheva and B.P. Rosen. 1994. Arsenate reduction by the plasmid-encoded ArsC protein is coupled to glutathione. Mol. Microbiol. 12: 301–306.PubMedGoogle Scholar
  59. 59.
    Odermatt, A., H. Suter, R. Krapf and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis inEnterococcus hirae. J. Biol. Chem. 268: 12775–12777.PubMedGoogle Scholar
  60. 60.
    Ohtake, H., C. Cervantes and S. Silver. 1987. Decreased chromate uptake inPseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853–3856.PubMedGoogle Scholar
  61. 61.
    Perry, R.D. and S. Silver. 1982. Cadmium and manganese transport inStaphylococcus aureus membrane vesicles. J. Bacteriol. 150: 973–976.PubMedGoogle Scholar
  62. 62.
    Poole, K. and R.E.W. Hancock. 1984. Phosphate transport inPseudomonas aeruginosa. Eur. J. Biochem. 144: 607–612.PubMedGoogle Scholar
  63. 63.
    Poole, K., K. Krebes, C. McNally and S. Neshat. 1993. Multiple antibiotic resistance inPseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175: 7363–7372.PubMedGoogle Scholar
  64. 64.
    Rao, N.N. and A. Torriani. 1990. Molecular aspects of phosphate transport inEscherichia coli. Mol. Microbiol. 4: 1083–1090.PubMedGoogle Scholar
  65. 65.
    Rosen, B.P. and M.G. Borbolla. 1984. A plasmid-encoded arsenite pump produces arsenite resistance inEscherichia coli. Biochem. Biophys. Res. Comm. 124: 760–765.PubMedGoogle Scholar
  66. 66.
    Rosen, B.P., U. Weigel, C. Karkaria and P. Gangola. 1988. Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070.PubMedGoogle Scholar
  67. 67.
    Rosenberg, H. 1987. Phosphate transport in prokaryotes. In: Ion Transport in Prokaryotes (Rosen, B.P. and S. Silver, eds.), pp. 205–248, Academic Press, San Diego.Google Scholar
  68. 68.
    Rosenberg, H., R. G. Gerdes and K. Chegwidden. 1977. Two systems for the uptake of phosphate inEscherichia coli. J. Bacteriol. 131: 505–511.PubMedGoogle Scholar
  69. 69.
    Rosenstein, R., A. Perschel, B. Wieland and F. Götz. 1992. Expression and regulation of the antimonite, arsenite and arsenate resistance operon ofStaphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676–3683.PubMedGoogle Scholar
  70. 70.
    Sahlman, L. and E.G. Skärfstad. 1993. Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem. Biophys. Res. Commun. 196: 583–588.PubMedGoogle Scholar
  71. 71.
    Saier, M. H., Jr. 1994. Computer-aided analysis of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution Microbiol. Rev. 58: 71–93.PubMedGoogle Scholar
  72. 72.
    Saier, M.H., Jr., R. Tam, A. Reizer and J. Reizer. 1994. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11: 841–847.PubMedGoogle Scholar
  73. 73.
    San Francisco, M.J.D., L.S. Tisa and B.P. Rosen. 1989. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol. Microbiol. 3: 15–21.PubMedGoogle Scholar
  74. 74.
    Schmidt, T. and H.G. Schlegel. 1994. Combined nickel-cobaltcadmium resistance encoded by thencc locus ofAlcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054.PubMedGoogle Scholar
  75. 75.
    Sensfuss, C. and H.G. Schlegel. 1988. Plasmid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol. Lett. 55: 295–298.Google Scholar
  76. 76.
    Siddiqui, R.A. and H.G. Schlegel. 1987. Plasmid pMOL28 mediated inducible nickel resistance inAlcaligenes eutrophus CH34. FEMS Microbiol. Lett. 43: 9–13.Google Scholar
  77. 77.
    Siddiqui, R.A., K. Benthin and H.G. Schlegel. 1989. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes inAlcaligenes eutrophus andPseudomonas spp. J. Bacteriol. 171: 5071–5078.PubMedGoogle Scholar
  78. 78.
    Silver, S., K. Budd, K.M. Leahy, W.V. Shaw, D. Hammond, R.P. Novick, G.R. Willsky, M.H. Malamy and H. Rosenberg. 1981. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) inEscherichia coli andStaphylococcus aureus. J. Bacteriol. 146: 983–996.PubMedGoogle Scholar
  79. 79.
    Silver, S., G. Ji, S. Bröer, S. Dey, D. Dou and B.P. Rosen. 1993. Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol. Microbiol. 8: 637–642.PubMedGoogle Scholar
  80. 80.
    Silver, S. and D. Keach. 1982. Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc. Natl Acad. Sci. USA 79: 6114–6118.PubMedGoogle Scholar
  81. 81.
    Silver, S., G. Nucifora, L. Chu and T.K. Misra. 1989. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14: 76–80.PubMedGoogle Scholar
  82. 82.
    Silver, S., G. Nucifora and L.T. Phung. 1993. Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Mol. Microbiol. 10: 7–12.PubMedGoogle Scholar
  83. 83.
    Silver, S. and M. Walderhaug. 1992. Gene regulation of plasmid-and chromosomal-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228.PubMedGoogle Scholar
  84. 84.
    Surin, B.P., G.B. Cox and H. Rosenberg 1987. Molecular studies on the phosphate-specific transport system ofEscherichia coli In: Phosphate Metabolism and Cellular Regulation in Microorganisms (Torriani-Gorini, A., F.G. Rothmann, S. Silver, A. Wright and E. Yagil, eds), pp. 145–149, American Society for Microbiology, Washington, DC.Google Scholar
  85. 85.
    Tisa, L.S. and B.P. Rosen. 1900. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190–194.Google Scholar
  86. 86.
    Torriani, A. 1990. From cell membranes to nucleotides: the phosphate regulon inEscherichia coli. Bioessays 12: 493–507.PubMedGoogle Scholar
  87. 87.
    Tsai, K.-J. and A.L. Linet. 1993. Formation of a phosphorylated enzyme intermediate by thecadA Cd2+-ATPase. Arch. Biochem. Biophys. 305: 267–270.PubMedGoogle Scholar
  88. 88.
    Tsai, K.-J., K.P. Yoon and A.R. Lynn. 1992. ATP-dependent cadmium transport by thecadA cadmium resistance determinant in everted membrane vesicles ofBacillus subtilis. J. Bacteriol. 174: 116–121.PubMedGoogle Scholar
  89. 89.
    Turner, R.J., Y. Hou, J.H. Weiner and D.E. Taylor. 1992. The arsenical ATPase efflux pump mediates tellurite resistance. J. Bacteriol. 174: 3092–3094.PubMedGoogle Scholar
  90. 90.
    Tynecka, Z., Z. Gos and J. Zajac. 1981a. Reduced cadmium transport determined by a plasmid inStaphylococcus aureus. J. Bacteriol. 147: 305–312.PubMedGoogle Scholar
  91. 91.
    Tynecka, Z., Z. Gos and J. Zajac. 1981b. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant inStaphylococcus aureus. J. Bacteriol. 147: 313–319.PubMedGoogle Scholar
  92. 92.
    Vulpe, C., B. Levinson, S. Whitney, S. Packman and J. Gitschier. 1993. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature (Genetics) 3: 7–13.Google Scholar
  93. 93.
    Wanner, B.L. 1990. Phosphate assimilation and its control of gene expression inEscherichia coli. In: The Molecular Basis of Bacterial Metabolism (Hauska, G. and R. Thauer, eds), pp. 152–163, Springer Verlag, Heidelberg.Google Scholar
  94. 94.
    Weiss, A.A., S. Silver and T.G. Kinscherf. 1978. Cation transport alteration associated with plasmid-determined resistance to cadmium inStaphylococcus aureus. Antimicrob. Agents Chemother. 14: 856–865.PubMedGoogle Scholar
  95. 95.
    Willksy, G.R. and M.H. Malamy. 1980a. Characterization of two genetically separable inorganic phosphate transport systems inEscherichia coli. J. Bacteriol. 144: 356–365.PubMedGoogle Scholar
  96. 96.
    Willsky, G.R. and M.H. Malamy. 1980b. Effect of arsenate on inorganic phosphate transport inEscherichia coli. J. Bacteriol. 144: 366–374.PubMedGoogle Scholar
  97. 97.
    Wu, J. and B.P. Rosen. 1991. The ArsR protein is a trans-acting regulatory protein. Molec. Microbiol. 5: 1331–1336.Google Scholar
  98. 98.
    Wu, J. and B.P. Rosen. 1993a. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol. Microbiol. 8: 615–623.PubMedGoogle Scholar
  99. 99.
    Wu, J. and B.P. Rosen. 1993b. Metalloregulated expression of thears operon. J. Biol. Chem. 268: 52–58.PubMedGoogle Scholar
  100. 100.
    Wu, J., L.S. Tisa and B.P. Rosen. 1992. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J. Biol. Chem. 267: 12570–12576.PubMedGoogle Scholar
  101. 101.
    Yoon, K.P., T.K. Misra and S. Silver. 1991. Regulation of the cadA cadmium resistance determinant ofStaphylococcus aureus. J. Bacteriol. 173: 7643–7649.PubMedGoogle Scholar
  102. 102.
    Yoon, K.P. and S. Silver. 1991. A second gene in theStaphylococcus aureus cadA cadmium resistance determinant. J. Bacteriol. 173: 7636–7642.PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 1995

Authors and Affiliations

  • Dietrich H. Nies
    • 1
  • Simon Silver
    • 2
  1. 1.Institut für MikrobiologieMartin-Luther-UniversitätHalleGermany
  2. 2.Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations