Skip to main content
Log in

Nickel resistance mechanisms in yeasts and other fungi

  • Published:
Journal of Industrial Microbiology

Summary

This review describes nickel toxicity and nickel resistance mechanisms in fungi. Nickel toxicity in fungi is influenced by environmental factors such as pH, temperature and the existence of organic matter and other ions. We describe resistance mechanisms in nickel-resistant mutants of yeasts and filamentous fungi which were obtained by exposure to a mutagen or by successive culture in media containing increasing concentrations of nickel ion. Nickel resistance may involve: (1) inactivation of nickel toxicity by the production of extracellular nickel-chelating substances such as glutathione; (2) reduced nickel accumulation, probably by modification of a magnesium transport system; (3) sequestration of nickel into a vacuole associated with free histidine and involving Ni-insensitivity of vacuolar membrane H+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abelson, P. and E. Aldous. 1950. Ion antagonisms in microorganisms: interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc and manganese. J. Bacteriol. 60: 401–413.

    PubMed  Google Scholar 

  2. Adiga, P.R., K.S. Sastry, V. Venkatasubramanyam and P.S. Sarma. 1961. Interrelationships in trace-element metabolism inAspergillus niger. Biochem. J. 81: 545–550.

    PubMed  Google Scholar 

  3. Anraku, Y., N. Umemoto, R. Hirata and Y. Wada. 1989. Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenerg. Biomembr. 21: 589–603.

    PubMed  Google Scholar 

  4. Ashida, J. 1965. Adaptation of fungi to metal toxicants. Ann. Rev. Phytopathol. 3: 153–174.

    Google Scholar 

  5. Babich, H. and G. Stotzky. 1982. Nickel toxicity to fungi: influence of environmental factors. Ecotoxicol. Environ. Safety 6: 577–589.

    PubMed  Google Scholar 

  6. Babich, H. and G. Stotzky. 1983. Nickel toxicity to estuarine/marine fungi and its amelioration by magnesium in sea water. Wat. Air Soil Pollut. 19: 193–202.

    Google Scholar 

  7. Babich, H. and G. Stotzky, 1983. Synergism between nickel and copper in their toxicity to microbes: mediation by pH. Ecotoxicol. Environ. Safety 7: 576–587.

    PubMed  Google Scholar 

  8. Babich, H., C. Shopsis and E. Borenfreund. 1986. Cadmiumnickel toxicity interactions towards a bacterium, filamentous fungi, and a cultured mammalian cell line. Bull. Environ. Contam. Toxicol. 37: 550–557.

    PubMed  Google Scholar 

  9. Bianchi, M.E., M.L. Carbone, G. Lucchini and G.E. Magni. 1981. Mutants resistant to manganese inSaccharomyces cerevisiae. Curr. Genet. 4: 215–220.

    Google Scholar 

  10. Bitton, G., B. Koopman and H.D. Wang. 1984. Baker's yeast assay procedure for testing heavy metal toxicity. Bull. Environ. Contam. Toxicol. 32: 80–84.

    PubMed  Google Scholar 

  11. Boyle, R.W. and H.A. Robinson. 1988. Nickel in the natural environment. Nickel and its Role in Biology, vol. 23 (Sigel, H. and A. Sigel, eds), pp. 123–164, Marcel Dekker, New York and Basel.

    Google Scholar 

  12. Brintzinger, H. 1963. The structures of adenosine triphosphate metal ion complexes in aqueous solution. Biochim. Biophys. Acta 77: 343–345.

    PubMed  Google Scholar 

  13. Brown, B.J., K.E. Allen and C.W. Slayman. 1983. Vanadateresistant mutants ofNeurospora crassa are deficient in a highaffinity phosphate transport system. J. Bacteriol, 153: 292–296.

    PubMed  Google Scholar 

  14. Brown, D.H. and R.P. Beckett. 1984. Uptake and effect of cations on lichen metabolism. Lichenol. 16: 173–188.

    Google Scholar 

  15. Cataldo, D.A., K.M. McFadden, T.R. Garland and R.E. Wildung. 1988. Organic constituents and complexation of nickel(II), iron(III), cadmium(II), and plutonium(IV) in soybean xylem exudates. Plant Physiol. 86: 734–739.

    Google Scholar 

  16. Cobet, A.B., G.E. Jones, J. Albright, H. Simon and C. Wirsen. 1971. The effect of nickel on a marine bacterium: fine structure ofArthrobacter marinus. J. Gen. Microbiol. 66: 185–196.

    PubMed  Google Scholar 

  17. Codina, J.C., A. Pérez-García, P. Romero and A. de Vicente. 1993. A comparison of microbial bioassays for the detection of metal toxicity. Arch. Environ. Contam. Toxicol. 25: 250–254.

    PubMed  Google Scholar 

  18. Conklin, D.S., J.A. McMaster, M.R. Culbertson and C. Kung. 1992. COT1, a gene involved in cobalt accumulation inSaccharomyces cerevisiae. Mol. Cell. Biol. 12: 3678–3688.

    PubMed  Google Scholar 

  19. Cornelius, G. and H. Nakashima. 1987. Vacuoles play a decisive role in calcium homeostasis inNeurospora crassa. J. Gen. Microbiol. 133: 2341–2347.

    Google Scholar 

  20. Ecker, D.J., T.R. Butt, E.J. Sternber, M.P. Neeper, C. Debouck, J.A. Gorman and S.T. Crooke. 1986. Yeast metallothionein function in metal ion detoxification. J. Biol. Chem. 261: 16895–16900.

    PubMed  Google Scholar 

  21. Eide, D.J., J.T. Bridgham, Z. Zhao and J.R. Mattoon. 1993. The vacuolar H+-ATPase ofSaccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol. Gen. Genet. 241: 447–456.

    PubMed  Google Scholar 

  22. Fitze, H., S. Niini, K. Mikkola and A. Mäkinen. 1989. Soil microbial effects of a Cu−Ni smelter in southwestern Finland. Biol. Fertil. Soil 8: 87–94.

    Google Scholar 

  23. Fuhrmann, G. and A. Rhothstein, 1968. The transport of Zn, Co and Ni into yeast cells. Biochim. Biophys. Acta 163: 325–330.

    PubMed  Google Scholar 

  24. Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 25–60.

    Google Scholar 

  25. Gadd, G.M. and A.J. Griffiths. 1978. Microorganisms and heavy metal toxicity. Microb. Ecol. 4: 303–317.

    Google Scholar 

  26. Gadd, G.M. and J.L. Mowll. 1983. The relationship between cadmium uptake, potassium release and viability inSaccharomyces cerevisiae. FEMS Microbiol. Lett. 16: 45–48.

    Google Scholar 

  27. Garcia-Toledo, A., H. Babich and G. Stotzky. 1985. Training ofRhizopus stolonifer andCunninghamella blakesleeana to copper: cotolerance to cadmium, cobalt, nickel, and lead. Can. J. Microbiol. 31: 485–492.

    Google Scholar 

  28. Gibson, M.M., D.A. Bagga, C.G. Miller and M. E. Maguire. 1991. Magnesium transport inSalmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol. Microbiol. 5: 2753–2762.

    PubMed  Google Scholar 

  29. Guha, C. and A. Mookerjee. 1979. Effect of nickel on macromolecular synthesis inEscherichia coli K-12. The Nucleus 22: 45–47.

    Google Scholar 

  30. Hamer, D.H. 1986. Metallothionein. Ann. Rev. Biochem. 55: 913–951.

    PubMed  Google Scholar 

  31. Haubenstricker, M.E., P.G. Meier, K.H. Mancy and M.J. Brabec. 1990. Rapid toxicity testing based on yeast respiratory activity. Bull. Environ. Contam. Toxicol. 44: 669–674.

    PubMed  Google Scholar 

  32. Hausinger, R.P. 1987. Nickel utilization by microorganisms. Microbiol. Rev. 51: 22–42.

    PubMed  Google Scholar 

  33. Hendrickson, H.S. and J.G. Fullington. 1965. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry 4: 1599–1605.

    PubMed  Google Scholar 

  34. Inouhe, M., M. Hiyama, H. Tohoyama, M. Joho and T. Murayama. 1989. Cadmium-binding protein in a cadmium-resistant strain ofSaccharomyces cerevisiae. Biochim. Biophys. Acta 993: 51–55.

    PubMed  Google Scholar 

  35. Joho, M., A. Ishibe and T. Murayama. 1984. The injurious effect of heavy metal ions on the cell membrane inSaccharomyces cerevisiae. Trans. Mycol. Soc. Japan 25: 485–488.

    Google Scholar 

  36. Joho, M., Y. Imada and T. Murayama. 1987. The isolation and characterization of Ni resistant mutants ofSaccharomyces cerevisiae. Microbios 51: 183–190.

    PubMed  Google Scholar 

  37. Joho, M., Y. Imada, H. Tohoyama and T. Murayama. 1988. Changes in a amino acid pool in a Ni-resistant strain ofSaccharomyces cerevisiae. FEMS Microbiol. Lett. 55: 137–140.

    Google Scholar 

  38. Joho, M., M. Inouhe, H. Tohoyama and T. Murayama. 1990. A possible role of histidine in a nickel resistant mechanism ofSaccharomyces cerevisiae. FEMS Microbiol. Lett. 66: 333–338.

    Google Scholar 

  39. Joho, M., K. Tarumi, M. Inouhe, H. Tohoyama and T. Murayama. 1991. Co2+ and Ni2+ resistance inSaccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+. Microbios 67: 177–186.

    PubMed  Google Scholar 

  40. Joho, M., Y. Ishikawa, M. Kunikane, M. Inouhe, H. Tohoyama and T. Murayama. 1992. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains ofSaccharomyces cerevisiae. Microbios 71: 149–159.

    PubMed  Google Scholar 

  41. Joho, M., M. Ikegami, M. Inouhe, H. Tohoyama and T. Murayama. 1993. Nickel sensitivity of vacuolar membrane ATPase in a nickel resistant strain ofSaccharomyces cerevisiae. Biomed. Lett. 48: 115–120.

    Google Scholar 

  42. Kamizono, A., M. Nishizawa, Y. Teranishi, K. Murata and A. Kimura. 1989. Identification of a gene conferring resistance to zinc and cadmium ions in the yeastSaccharomyces cerevisiae. Mol. Gen. Genet. 219: 161–167.

    PubMed  Google Scholar 

  43. Kida, K., D. Gent and J. C. Slaughter. 1993. Effect of vacuoles of viability ofSaccharomyces cerevisiae. J. Ferment. Bioeng. 76: 284–288.

    Google Scholar 

  44. Kitamoto, K., K. Yoshizawa, Y. Ohsumi and Y. Anraku. 1988. Mutants ofSaccharomyces cerevisiae with defective vacuolar function. J. Bacteriol. 170: 2687–2691.

    PubMed  Google Scholar 

  45. Klionsky, D.J., P.K. Herman and S.D. Erm. 1990. The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54: 266–292.

    PubMed  Google Scholar 

  46. Kumar, S. CH., S.K. Sastry and M.P. Mohan. 1992. Use of wild type and nickel resistantNeurospora crassa for removal of Ni2+ from aqueous medium. Biotechnol. Lett. 14: 1099–1202.

    Google Scholar 

  47. Latterich, M. and M.D. Watson. 1991. Isolation and characterization of osmosensitive vacuolar mutants ofSaccharomyces cerevisiae. Mol. Microbiol. 5: 2417–2426.

    PubMed  Google Scholar 

  48. Leberman, R. and B.R. Rabin. 1957. Metal complexes of histidine. Trans. Faraday Soc. 55: 1660–1670.

    Google Scholar 

  49. Lichko, L.P., L.A. Okorokov and I.S. Kulaev. 1982. Participation of vacuoles in regulation of levels of K+, Mg2+ and orthophosphate ions in cytoplasm of the yeastSaccharomyces carlsbergensis. Arch. Microbiol. 132: 289–293.

    Google Scholar 

  50. Mahanty, S.K., R. Khaware, S. Ansari, P. Gupta and R. Prasad. 1991. Vanadate-resistant mutants ofCandida albicans show alterations in phosphate uptake. FEMS Microbiol. Lett. 84: 163–166.

    Google Scholar 

  51. Martin, R.B. 1988. Nickel ion binding to amino acids and peptides. In: Metal Ions in Biological Systems, vol. 23. Nickel and its Role in Biology (Sigel, H. and A. Sigel, eds), pp. 123–164, Marcel Dekker, New York and Basel.

    Google Scholar 

  52. Messenguy, F., D. Colin and J.T. Ten Have. 1980. Regulation of compartmentation of amino acid pools inSaccharomyces cerevisiae and its effects on metabolic control. Eur. J. Biochem. 108: 439–447.

    PubMed  Google Scholar 

  53. Mochida, K., M. Gomyoda, T. Fujita and K. Yamagata. 1988. Cell culture systems are more sensitive thanSaccharomyces cerevisiae tests for assessing the toxicity of aquatic pollutants. Bull. Environ. Contam. Toxicol. 41: 1–3.

    PubMed  Google Scholar 

  54. Mohan, P.M. and K.S. Sastry. 1983. Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains ofNeurospora crassa. Biochem. J. 212: 205–210.

    PubMed  Google Scholar 

  55. Mohan, P.M. and K.S. Sastry. 1983. Studies on copper toxicity in nickel-resistant strains ofNeurospora crassa. Curr. Microbiol. 9: 127–132.

    Google Scholar 

  56. Mohan, P.M. and K.S. Sastry. 1984. Excretion of pyruvate in nickel toxicity in wild type and Ni2+ resistant mutants ofNeurospora crassa. J. Biosci. 6: 283–288.

    Google Scholar 

  57. Murata, K., Y. Fukuda, M. Shimosaka, K. Watanabe, T. Saikusa and A. Kimura. 1985. Phenotypic character of the methylglyoxal resistance gene inSaccharomyces cerevisiae: expression inEscherichia coli and application to breeding wild-type yeast strains. Appl. Environ. Microbiol. 50: 1200–1207.

    PubMed  Google Scholar 

  58. Murphy, R.J. and J.F. Levy. 1983. Production of copper oxalate by some copper tolerant fungi. Trans. Br. Mycol. Soc. 81: 165–168.

    Google Scholar 

  59. Nelson, D.L. and E.P. Kennedy. 1972. Transport of magnesium by a repressible and a nonrepressible system inEscherichia coli. Proc. Nat. Acad. Sci. USA 69: 1091–1093.

    PubMed  Google Scholar 

  60. Ono, B., H. Ohue and F. Ishihara. 1988. Role of cell wall inSaccharomyces cerevisiae mutants resistant to Hg2+. J. Bacteriol. 170: 5877–5882.

    PubMed  Google Scholar 

  61. Ortiz, D.F., L. Kreppel, D.M. Speiser, G. Scheel, G. MaDonald and D.W. Ow. 1992. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11: 3491–3499.

    PubMed  Google Scholar 

  62. Protheroe, R.G., R.H. Cumming and A. Matchett. 1989. Medium-induced inhibition of microbial adsorption to nickel and activated charcoal. Biotechnol. Bioeng. 34: 896–901.

    Google Scholar 

  63. Ramamoorthy, S. and D.J. Kushner. 1975. Binding of mercuric and other heavy metal ions by microbial growth media. Microbiol. Ecol. 2: 162–176.

    Google Scholar 

  64. Reith, A., R. Voss, J. Jacobsen and M. Boysen. 1985. Biological characterization of cells cultured from a sinonasal carcinoma of a former nickel worker. In: Progress in Nickel Toxicology (Brown, S.S. and F.W. Sunderman Jr, eds), pp 57–66, Blackwell Scientific Publications, California, USA.

    Google Scholar 

  65. Ross, I.S. 1975. Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc. 64: 175–193.

    Google Scholar 

  66. Sastry, K.S., P.R. Adiga, V. Venkatasubramanyam and P.S. Sarma. 1962. Interrelationships in trace-element metabolism in metal toxicities inNeurospora crassa. Biochem. J. 85: 486–491.

    PubMed  Google Scholar 

  67. Schmidt, T. and H.G. Schlegel. 1989. Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol. Ecol. 62: 315–328.

    Google Scholar 

  68. Siddiqui, R.A., H.G. Schlegel and M. Meyer. 1987. Plasmid pMOL28-mediated inducible nickel resistance inAlcaligenes entrophus strain CH34. FEMS Microbiol. Lett. 43: 9–13.

    Google Scholar 

  69. Somers, E. 1961. The fungitoxicity of metal ions. Ann. Appl. Biol. 49: 246–253.

    Google Scholar 

  70. Stokes, P.M. 1981. Multiple metal tolerance in copper tolerant green algae. J. Plant Nutr. 3: 667–678.

    Google Scholar 

  71. Stokes, P.M., T.C. Hutchinson and K. Krauter. 1973. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario, Can J. Bot. 51: 2155–2168.

    Google Scholar 

  72. Stults, L.W., S.M. Allick and R.J. Maier. 1987. Nickel uptake inBradyrhizobium japonicum. J Bacteriol. 169: 1398–1402.

    PubMed  Google Scholar 

  73. White, C. and G.M. Gadd. 1986. Uptake and cellular distribution of copper, cobalt and cadmium in strains ofSaccharomyces cerevisiae cultured on elevated concentrations of these metals. FEMS Microbiol. Ecol. 38: 277–283.

    Google Scholar 

  74. Yamashiro, C.T., P.M. Kane, D.F. Wolczyk, R.A. Preston and T.H. Stevens. 1990. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol. Cell. Biol. 10: 3737–3749.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joho, M., Inouhe, M., Tohoyama, H. et al. Nickel resistance mechanisms in yeasts and other fungi. Journal of Industrial Microbiology 14, 164–168 (1995). https://doi.org/10.1007/BF01569899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569899

Key words

Navigation