Journal of Industrial Microbiology

, Volume 14, Issue 2, pp 85–93 | Cite as

Bioremediation of organic and metal contaminants with dissimilatory metal reduction

  • Derek R. Lovley
Article

Summary

Dissimilatory metal reduction has the potential to be a helpful mechanism for both intrinsic and engineered bioremediation of contaminated environments. Dissimilatory Fe(III) reduction is an important intrinsic process for removing organic contaminants from aquifers contaminated with petroleum or landfill leachate. Stimulation of microbial Fe(III) reduction can enhance the degradation of organic contaminants in ground water. Dissimilatory reduction of uranium, selenium, chromium, technetium, and possibly other metals, can convert soluble metal species to insoluble forms that can readily be removed from contaminated waters or waste streams. Reduction of mercury can volatilize mercury from waters and soils. Despite its potential, there has as yet been limited applied research into the use of dissimilatory metal reduction as a bioremediation tool.

Key words

Bioremediation Dissimilatory metal reduction Metal transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acton, D.W. and J.F. Barker. 1992. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters. J. Contam. Hydrol. 9: 325–352.Google Scholar
  2. 2.
    Adriano, D.C., A.L. Page, A.A. Elseewi, A.C. Chang and I. Straughan. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J. Environ. Qual. 9: 333–344.Google Scholar
  3. 3.
    Alemi, M.H., D.A. Goldhamer and D.R. Nielsen. 1988. Elution of selenium from contaminated evaporation pond sediments. J. Environ. Qual. 17: 613–618.Google Scholar
  4. 4.
    Aller, R.C., J.E. Macklin and R.T.J. Cox. 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf Res. 6: 263–289.Google Scholar
  5. 5.
    Altringer, P.B., R.H. Lien and K.R. Gardner. 1991. Biological and chemical selenium removal from precious metals solutions. In: Environmental Management for the 1990s (Lootens, D.J., W.M. Greenslade and J.M. Barker, eds), pp. 135–142, Society for Mining, Metallurgy, and Exploration, Littleton, Colorado.Google Scholar
  6. 6.
    Anid, P.J., P.J.J. Alvarez and T.M. Vogel. 1993. Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Wat. Res. 27: 685–691.Google Scholar
  7. 7.
    Baedecker, M.J., I.M. Cozzarelli, D.I. Siegel, P.C. Bennett and R.P. Eganhouse. 1993. Crude oil in a shallow sand and gravel aquifer. 3. Biogeochemical reactions and mass balance modeling in anoxic ground water. Appl. Geochem. 8: 569–586.Google Scholar
  8. 8.
    Baldi, F., A. Boudou and F. Ribeyre. 1992. Response of a fresh-water bacterial community to mercury contamination (HgCl2 and CH3HgCl) in a controlled system. Arch. Environ. Contam. Toxicol. 22: 439–444.Google Scholar
  9. 9.
    Baldi, F., F. Parati, F. Semplici and V. Tandoi. 1993. Biological removal of inorganic Hg(II) as gaseous elemental Hg(0) by continuous culture of a Hg-resistantPseudomonas putida strain FB-1. World J. Microbiol. Biotech. 9: 275–279.Google Scholar
  10. 10.
    Baldi, F., F. Semplici and M. Filippelli 1991. Environmental applications of mercury resistant bacteria. Water, Air, Soil Pollut. 56: 465–475.Google Scholar
  11. 11.
    Barbaro, J.R., J.F. Barker, L.A. Lemon and C.I. Mayfield. 1992. Biotransformation of BTEX under anaerobic denitrifying conditions: field and laboratory observations. J. Contam. Hydrol. 11: 245–272.Google Scholar
  12. 12.
    Barkay, T. 1987. Adaptation of aquatic microbial communities to Hg2+ stress. Appl. Environ. Microbiol. 53: 2725–2732.Google Scholar
  13. 13.
    Barkay, T. and B.H. Olson. 1986. Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl. Environ. Microbiol. 52: 403–406.PubMedGoogle Scholar
  14. 14.
    Barkay, T., C. Liebert and M. Gillman. 1989. Environmental significance of the potential former(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters. Appl. Environ. Microbiol. 55: 1196–1202.PubMedGoogle Scholar
  15. 15.
    Barkay, T., C. Liebert and M. Gillman. 1989. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbia resonses to pollutants:mer genes and Hg2+ resistance. Appl. Environ. Microbiol. 55: 1574–1577.PubMedGoogle Scholar
  16. 16.
    Barkay, T., R.R. Turner, A. VandenBrook and C. Liebert. 1991 The relationships of Hg(II) volatilization from a freshwater pond to the abundance ofmer genes in the gene pool of the indigenous microbial community. Microb. Ecol. 21: 151–161.Google Scholar
  17. 17.
    Barker, J.K., P. Major and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Wat. Monitor. Rev. 7: 64–71.Google Scholar
  18. 18.
    Bautista, E.M. and M. Alexander. 1972. Reduction of inorganic compounds by soil microorganisms. Soil Sci. Soc. Amer. Proc. 36: 918–920.Google Scholar
  19. 19.
    Beller, H.R., D. Grbic-Galic and M. Reinhard. 1992. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Appl. Environ. Microbiol. 58: 786–793.PubMedGoogle Scholar
  20. 20.
    Bopp, L.H. and H.L. Ehrlich. 1988. Chromate resistance and reduction inPseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431Google Scholar
  21. 21.
    Bouwer, E.J. 1992. Bioremdiation of organic contaminants in the subsurface. In: Environmental Microbiology (Mitchell, R., ed.), pp. 287–318, John Wiley & Sons, New York.Google Scholar
  22. 22.
    Bradford, G.R., D. Bakhtar and D. Westcot. 1990. Uranium, vanadium, and molybdenum in saline waters of California. J. Environ. Qual. 19: 105–108.Google Scholar
  23. 23.
    Brown, N.L. 1985. Bacterial resistance to mercury—reductio ad absurdum? Trends Biochem. Sci. 41: 400–403.Google Scholar
  24. 24.
    Brunke, M., W.-D. Deckwer, A. Frischmuth, J.M. Horn, H. Lunsdorf, M. Rhode, M. Rohricht, K.N. Timmis and P. Weppen. 1993. Micribial retention of mercury from waste streams in a laboratory column containingmerA gene bacteria. FEMS Microbiol. Rev. 11: 145–152.PubMedGoogle Scholar
  25. 25.
    Burton Jr, G.A., T.H. Giddings, P. DeBrine and R. Fall. 1987. High incidence of selenite-resistant bacteria from a site polluted with selenium. Appl. Environ. Microbiol. 53: 185–188.PubMedGoogle Scholar
  26. 26.
    Canfield, D., B. Thamdrup and J.W. Hansen. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Fe reduction, Mn reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3883.PubMedGoogle Scholar
  27. 27.
    Cervantes, C. 1991. Bacterial interactions with chromate. Antonie van Leeuwenhoek 59: 229–233.PubMedGoogle Scholar
  28. 28.
    Coleman, R.N. and J.H. Padran. 1991. Biofilm concentration of chromium. Environ. Technol. 12: 1079–1093.Google Scholar
  29. 29.
    Committee on In Situ Bioremediation, Water, Science and Technology Board, National Research Council. 1993. In Situ Bioremediation. National Academy Press, Washington, DC.Google Scholar
  30. 30.
    Doran, J.W. 1982. Microorganisms and the biological cycling of selenium. Adv. Microbial. Ecol. 6: 1–32.Google Scholar
  31. 31.
    Doran, J.W. and M. Alexander. 1977. Microbial formation of volatile Se compounds in soil. Soil Sci. Soc. Am. J. 40: 687–690.Google Scholar
  32. 32.
    Eary, L.E. and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972–977.Google Scholar
  33. 33.
    Edwards, E.A. and D. Grbic-Galic. 1992. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58: 2663–2666.PubMedGoogle Scholar
  34. 34.
    Ehrlich, G.G., E.M. Godsy, D.F. Goerlitz and M.F. Hult. 1983. Microbial ecology of a creosote-contaminated aquifer at St Louis Park, Minnesota. Dev. Ind. Microbiol 24: 235–245.Google Scholar
  35. 35.
    Flyvbjerg, J., E. Arivn, B.K. Jensen and S.K. Olsen. 1993. Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions. J. Contam. Hydrol. 12: 133–150.Google Scholar
  36. 36.
    Frischmuth, A., P. Weppen and W.-D. Decker. 1993. Microbial transformation of mercury(II). I. Isolation of microbes and characterization of their transformation capabilities. J. Biotech. 29: 39–55.Google Scholar
  37. 37.
    Gerhardt, M.B., F.B. Green, D. Newman, T.J. Lundquist, R.B. Tresan and W.J. Oswald. 1991. Removal of selenium using a novel algal-bacterial process. Res. J. Water Pollut. Control Fed. 63: 799–805.Google Scholar
  38. 38.
    Gillham, R.W., R.C. Starr and D.J. Miller. 1990. A device for in situ determinations of geochemical transport parameters. 2. Biochemical reactions. Ground Water 28: 858–862.Google Scholar
  39. 39.
    Goldstein, R.W., B.H. Olson and D.B. Porcella. 1988. Conceptual model of genetic regulation of mercury biogeochemical cycling. Environ. Technol. Lett. 9: 957–964.Google Scholar
  40. 40.
    Gorby, Y.A. and D.R. Lovley. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26: 205–207.Google Scholar
  41. 41.
    Grbic-Galic, D. and T. Vogel 1987. Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260.PubMedGoogle Scholar
  42. 42.
    Hansen, C.L., G. Zwolinski, D. Martin and J.W. Williams. 1984. Bacterial removal of mercury from sewage. Biotechnol. Bioeng. 26: 1330–1333.Google Scholar
  43. 43.
    Hardoyo, J.K. and H. Ohtake. 1991. Effects of heavy metal cations on chromate reduction byEnterobacter cloacae strain HO1. J. Gen. Appl. Microbiol. 37: 519–522.Google Scholar
  44. 44.
    Heijman, C.G., C. Holliger, M.A. Glaus, R.P. Schwarzenbach and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59: 4350–4353.Google Scholar
  45. 45.
    Henrot, J. 1989. Bioaccumulation and chemical modification of Tc by soil bacteria. Health Physics 57: 239–245.PubMedGoogle Scholar
  46. 46.
    Horitsu, H., S. Futo, Y. Miyazawa, S. Ogai and K. Kawai. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420.Google Scholar
  47. 47.
    Horn, J.M., M. Brunke, W.-D. Deckwer and K.N. Timmis. 1994.Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants. Appl. Environ. Microbiol. 60: 357–362.Google Scholar
  48. 48.
    Hutchins, S.R. 1991. Optimizing BTEX biodegradation under denitrifying conditions. Environ. Toxicol. Chem. 10: 1437–1488.Google Scholar
  49. 49.
    Hutchins, S.R., G.W. Sewell D.A. Kovacs and G.A. Smith. 1991. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25: 68–76.Google Scholar
  50. 50.
    Ishibashi, Y., C. Cervantes and S. Silver. 1990. Chromium reduction inPseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270.PubMedGoogle Scholar
  51. 51.
    Kauffman, J.W., W.C. Laughlin and R.A. Baldwin. 1986. Microbiological treatment of uranium mine waters. Environ. Sci. Technol. 20: 243–248.Google Scholar
  52. 52.
    Komori, K., A. Rivas, K. Toda and H. Ohtake. 1990. Biological removal of toxic chromium using anEnterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioengin. 35: 951–954.Google Scholar
  53. 53.
    Komori, K., A. Rivas, K. Toda and H. Ohtake. 1990. A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain ofEnterobacter cloacae. Appl. Microbiol. Biotechnol. 33: 117–119.PubMedGoogle Scholar
  54. 54.
    Komori, K., P. Wang, K. Toda and H. Ohtake. 1989. Factors affecting chromate reduction inEnterobacter cloacae strain HO1. Appl. Microbiol. Biotechnol. 31: 567–570.Google Scholar
  55. 55.
    Kuhn, E.P., J. Zeyer, P. Eicher and R.P. Schwarzenbach. 1988. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490–496.PubMedGoogle Scholar
  56. 56.
    Langmuir, D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 42:547–569.Google Scholar
  57. 57.
    Lee, M.D., J.M. Thomas, J.C. Borden, P.B. Bedient, C.H. Ward and J.T. Wilson. 1988. Biorestoration of aquifers contaminated with organic compounds. CRC Crit. Rev. Environ. Control 18: 29–89.Google Scholar
  58. 58.
    Lonergan, D.J. and D.R. Lovley. 1991. Microbial oxidation of natural and anthropogenic aromatic compounds coupled to Fe(III) reduction. In: Organic Substances and Sediments in Water (Baker, R.A., ed.), pp. 327–338, Lewis Publishers, Chelsea, Michigan.Google Scholar
  59. 59.
    Long, R.H.B., S.M. Benson, T.K. Tokunaga and A. Yee. 1990. Selenium immobilization in a pond sediment at Kesterson Researvoir. J. Environ. Qual. 19: 302–311.Google Scholar
  60. 60.
    Lovley, D.R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259–287.PubMedGoogle Scholar
  61. 61.
    Lovley, D.R. 1993. Dissimilatory metal reduction. Ann. Rev. Microbiol. 47: 263–290.Google Scholar
  62. 62.
    Lovley, D.R. and D.J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, andp-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858–1864.Google Scholar
  63. 63.
    Lovley, D.R. and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683–689.Google Scholar
  64. 64.
    Lovley, D.R. and E.J.P. Phillips. 1992. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26:2228–2234.Google Scholar
  65. 65.
    Lovley, D.R. and E.J.P. Phillips. 1992. Reduction of uranium byDesulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850–856.PubMedGoogle Scholar
  66. 66.
    Lovley, D.R. and E.J.P. Phillips. 1994. Reduction of chromate byDesulfovibrio vulgaris (Hildenborough) and itsc 3 cytochrome. Appl. Environ. Microbiol. 60: 726–728.Google Scholar
  67. 67.
    Lovley, D.R., M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips and D.I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297–299.Google Scholar
  68. 68.
    Lovley, D.R., E.J.P. Phillips, Y.A. Gorby and E.R. Landa. 1991. Microbial reduction of uranium. Nature 350: 413–416.Google Scholar
  69. 69.
    Lovley, D.R., E.E. Roden, E.J.P. Phillips and J.C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol. 113: 41–53.Google Scholar
  70. 70.
    Lovley, D.R., J.F. Stolz, G.L. Nord and E.J.P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252–254.Google Scholar
  71. 71.
    Lovley, D.R., P.K. Widman, J.C. Woodward and J.P. Phillips. 1993. Reduction of uranium by cytochromec 3 ofDesulfovibrio vulgaris. Appl. Environ. Microbiol. 59: 3572–3576.PubMedGoogle Scholar
  72. 72.
    Lovley, D.R., J.C. Woodward and F.H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128–131.PubMedGoogle Scholar
  73. 73.
    Luoma, S.N., C. Johns, N.S. Fisher, N.A. Steinberg, R.S. Oremland and J.R. Reinfelder. 1992. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ. Sci. Technol. 26: 485–491.Google Scholar
  74. 74.
    Lyngkilde, J. and T.H. Christensen. 1992. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contamin. Hydrol. 10:291–307.Google Scholar
  75. 75.
    Macaskie, L.E. 1991. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit. Rev. Biotechnol. 11: 41–112.PubMedGoogle Scholar
  76. 76.
    Macy, J.M., S. Lawson and H. DeMoll-Decker. 1993. Bioremediation of selenium oxyanions in San Joaquin drainage water usingThauera selenatis in a biological reactor system. Appl. Microbiol. Biotechnol. 40: 588–594.Google Scholar
  77. 77.
    Macy, J.M., T.A. Michel and D.G. Kirsch. 1989. Selenate reduction by aPseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol. Lett. 61: 195–198.Google Scholar
  78. 78.
    Macy, J.M., S. Rech, G. Auling, M. Dorsch, E. Stackebrandt and L.I. Sly. 1993.Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of theProteobacteria with a novel type of anaerobic respiration. Int. J. Sys. Bacteriol. 43: 135–142.Google Scholar
  79. 79.
    Maiers, D.T., P.L. Wichlacz, D.L. Thompson and D.F. Bruhn. 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54: 2591–2593.PubMedGoogle Scholar
  80. 80.
    Major, D.W., C.I. Mayfield and J.F. Barker. 1988. Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26: 8–14.Google Scholar
  81. 81.
    Moore, J.W. 1990. Inorganic Contaminants of Surface Water. Springer-Verlag, New York.Google Scholar
  82. 82.
    Morgan, P. and R.J. Watkinson. 1992. Factors limiting the supply and efficiency of nutrient and oxygen supplements for thein situ biotreatment of contaminated soil and groundwater. Wat. Res. 26: 73–78.Google Scholar
  83. 83.
    Nriagu, J.O. and H.K. Wong. 1983. Selenium pollution of lakes near the smelters at Sudbury, Ontario. Nature 301: 55–57.Google Scholar
  84. 84.
    Ogunseitan, O.A. and B.H. Olson. 1991. Potential for genetic enhancement of bacterial detoxification of mercury waste. In: Mineral Bioprocessing (Smith, R. W. and M. Misra, eds), pp. 325–337, The Minerals, Metals and Materials Society, Santa Barbara, California.Google Scholar
  85. 85.
    Ohtake, H., E. Fujii and K. Toda. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain ofEnterobacter Cloacae. Environ. Technol. 11: 663–668.Google Scholar
  86. 86.
    Olson, B.H., S.M. Cayless, S. Ford and J.N. Lester. 1991. Toxic element contamination and the occurrence of mercury-resistant bacteria in Hg-contaminated soil, sediments, and sludges. Arch. Environ. Contam. Toxicol. 20: 226–233.Google Scholar
  87. 87.
    Oremland, R.S. 1994. Biogeochemical transformations of selenium in anoxic environments. In: Selenium in the Environment (Frankenberger Jr, W.T., ed.), pp. 389–419, Marcel Dekker, New York.Google Scholar
  88. 88.
    Oremland, R.W., J.T. Hollibaugh, A.S. Maest, T.S. Presser, L.G. Miller and C.W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55: 2333–2343.Google Scholar
  89. 89.
    Oremland, R.S., N.A. Steinberg, A.S. Maest, L.G. Miller and J.T. Hollibaugh. 1990. Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ. Sci. Technol. 24: 1157–1164.Google Scholar
  90. 90.
    Oremland, R.S., N.A. Steinberg, T.S. Presser and L.G. Miller. 1991. In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Appl. Environ. Microbiol. 57: 615–617.PubMedGoogle Scholar
  91. 91.
    Palmer, C.D. and P.R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92:25–40.PubMedGoogle Scholar
  92. 92.
    Phillips, E.J.P., D.R. Lovley and E.R. Landa. 1994. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J. Ind. Microbiol. 14: 202–206.Google Scholar
  93. 93.
    Pignolet, L., F. Auvary, K. Fonsny, F. Capot and Z. Moureau. 1989. Role of various microorganisms on Tc behavior in sediments. Health Phys. 57: 791–800.PubMedGoogle Scholar
  94. 94.
    Presser, T.C. and I. Barnes. 1984. Selenium concentrations in water in the vicinity of Kesterson National Wildlife Refuge and the west grassland, Fresno and Merced counties, California. US Geological Water Resources Investigations Report 85-4220, US Geological Survey, Menlo Park, CA.Google Scholar
  95. 95.
    Regnell, O. 1990. Conversion and partitioning of radio-labelled mercury chloride in aquatic model systems. Can. J. Fish. Aquat. Sci. 47: 548–553.Google Scholar
  96. 96.
    Richard, F.C. and C.M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Wat Res. 25: 807–816.Google Scholar
  97. 97.
    Robinson, J.B. and O.H. Tuovinen. 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological biochemical, and genetic analyses. Microbiol. Rev. 48: 95–124.PubMedGoogle Scholar
  98. 98.
    Rochelle, P.A., M.K. Wetherbee and B.H. Olson. 1991. Distribution of DNA sequences encoding narrow- and broad-spectrum mercury resistance. Appl. Environ. Microbiol. 57: 1581–1589.Google Scholar
  99. 99.
    Saiz, B.L. and L.L. Barton. 1992. Transformation of Pb II to lead colloid byMoraxella bovis. Amer. Soc. Micro. Meet. Abst. 347.Google Scholar
  100. 100.
    Salanitro, J.P. 1993. The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Wat. Monitor. Remed. 13: 150–161.Google Scholar
  101. 101.
    Schwille, F. 1976. Anthropogenically reduced groundwaters. Hydrol. Sci. Bull. 21: 629–645.Google Scholar
  102. 102.
    Sheppard, S. C., M.I. Sheppard and W.G. Evenden. 1990. A novel method used to examine variation in Tc sorption among 34 soils, aerated and anoxic. J. Environ. Radioactivity 11: 215–233.Google Scholar
  103. 103.
    Silver, S. 1991. Resistance systems and detoxification of toxic heavy metals. In: Proceedings of the Eighth International Biodeterioration and Biodegradation Symposium (Rossmore, H., ed.), pp. 308–339, Elsevier, London.Google Scholar
  104. 104.
    Sorg, T.J. 1990. Removal of uranium from drinking water by conventional treatment methods. In: Radon, Radium and Uranium in Drinking Water (Cothern, C.R. and P.A. Rebers, eds), pp. 173–191, Lewis Publishers, Chelsea, Michigan.Google Scholar
  105. 105.
    Steinberg, N.A. and R.S. Oremland. 1990. Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl. Environ. Microbiol. 56: 3550–3557.Google Scholar
  106. 106.
    Steinberg, N. A., J.S. Blum, L. Hochstein and R.S. Oremland. 1992. Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl. Environ. Microbiol. 58: 426–428.Google Scholar
  107. 107.
    Summers, A.O. and T. Barkay. 1989. Metal resistance genes in the environment. In: Gene Transfer in the Environment (Levy, S. and R. Miller, eds), pp. 287–308, McGraw-Hill, New York.Google Scholar
  108. 108.
    Suzuki, T., K. Furukawa and K. Tonomura. 1968. Studies on the removal of inorganic mercurial compounds in waste by the cellreused method of mercury-resistant bacterium. J. Ferment. Technol. 46: 1048–1055.Google Scholar
  109. 109.
    Thomas, J.M. and C.H. Ward. 1989. In situ biorestoration of organic contaminants in the subsurface. Environ. Sci. Technol. 23: 760–766.Google Scholar
  110. 110.
    Trabalka, J.R. and C.T. Garten. 1983. Behavior of the long-lived synthetic elements and their natural analogs in food chains. Adv. Radiat. Biol. 10: 39–104.Google Scholar
  111. 111.
    Wang, P., T. Mori, K. Komori, M. Sasatsu, K. Toda and H. Ohtake. 1989. Isolation and characterization of anEnterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669.Google Scholar
  112. 112.
    Wang, P., T. Mori, K. Toda and H. Ohtake. 1990. Membrane-associated chromate reductase activity fromEnterobacter cloacae. J. Bacteriol. 172: 1670–1672.PubMedGoogle Scholar
  113. 113.
    Welch, A.H. and L.C.S. Gundersen. 1990. Distribution and sources of uranium in the Carson river basin, Western Nevada and Eastern California, USA. Eos, Transc. Amer. Geophys. Union 71: 1305.Google Scholar
  114. 114.
    Wilson, B.H., G.B. Smith and J.F. Rees. 1986. Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ. Sci. Technol. 20: 997–1002.Google Scholar

Copyright information

© Society for Industrial Microbiology 1995

Authors and Affiliations

  • Derek R. Lovley
    • 1
  1. 1.Water Resources DivisionUS Geological SurveyRestonUSA

Personalised recommendations