Advertisement

Journal of Industrial Microbiology

, Volume 14, Issue 2, pp 76–84 | Cite as

Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity

  • Simon V. Avery
Article

Summary

The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs+ in the natural environment. Although Cs+ is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K+ facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs+ (K+) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differe widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs+; Cs+ appears to have an equal or greater affinity than K+ for transport in certain microorganisms. Microbial Cs+ accumulation is markedly influenced by the presence of external cations, e.g. K+, Na+, NH4+ and H+, and is generally accompanied by an approximate stoichiometric exchange for intracellular K+. However, stimulation of growth of K+-starved microbial cultures by Cs+ is limited and its has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+. Increased microbial tolerance to Cs+ may result from sequestration of Cs+ in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs+ uptake. The precise intracellular target(s) for Cs+-induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs+ and Cs+ is known to substitute poorly for K+ in the activation of many K+-requiring enzymes.

Key words

Caesium Caesium uptake Caesium toxicity Metal-microbe interactions Monovalent cation transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, I. and J.A. Hellebust. 1984. Osmoregulation in the extremely euryhaline marine microalgaChlorella autotrophica. Plant Physiol. 74: 1010–1015.Google Scholar
  2. 2.
    Aiking, H. and D.W. Tempest. 1977. Rubidium as a probe for function and transport of potassium in the yeastCandida utilis. Arch. Microbiol. 115: 215–221.PubMedGoogle Scholar
  3. 3.
    Angel, M.V. 1983. Are there any potentially important routes whereby radionuclides can be transferred by biological processes from the sea-bed towards the surface? In: Ecological Aspects of Radionuclide Release (Coughtrey, P.J., J.N.B. Bell and T.M. Roberts, eds), pp. 161–176, Blackwell, Oxford.Google Scholar
  4. 4.
    Armstrong, W.McD. and A. Rothstein. 1964. Discrimination between alkali metal cations by yeast. I. Effect of pH on uptake. J. Gen. Physiol. 48: 61–71.PubMedGoogle Scholar
  5. 5.
    Armstrong, W.McD. and A. Rothstein. 1967. Discrimination between alkali metal cations by yeast. II. Cation interactions in transport. J. Gen. Physiol. 50: 967–988.PubMedGoogle Scholar
  6. 6.
    Avery, S.V. 1994. Microbial interactions with caesium—implications for biotechnology. J. Chem. Tech. Biotechnol. (in press).Google Scholar
  7. 7.
    Avery, S.V. and J.M. Tobin. 1993. Mechanism of adsorption of hard and soft metal ions toSaccharomyces cerevisiae and influence of hard and soft anions. Appl. Environ. Microbiol. 59: 2851–2856.PubMedGoogle Scholar
  8. 8.
    Avery, S.V., G.A. Codd and G.M. Gadd. 1991. Caesium accumulation and interactions with other monovalent cations in the cyanobacteriumSynechocystis PCC 6803. J. Gen. Microbiol. 137: 405–413.Google Scholar
  9. 9.
    Avery, S.V., G.A. Codd and G.M. Gadd. 1992. Interactions of cyanobacteria and microalgae with caesium. In: Impact of Heavy Metals on the Environment (Vernet, J.-P., ed.), pp. 133–182, Elsevier, Amsterdam.Google Scholar
  10. 10.
    Avery, S.V., G.A. Codd and G.M. Gadd. 1992. Caesium transport in the cyanobacteriumAnabaena variabilis: kinetics and evidence for uptakevia ammonium transport system(s). FEMS Microbiol. Lett. 95: 253–258.Google Scholar
  11. 11.
    Avery, S.V., G.A. Codd and G.M. Gadd. 1992. Replacement of cellular potassium by caesium inChlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. J. Gen. Microbiol. 138: 69–76.Google Scholar
  12. 12.
    Avery, S.V., G.A. Codd and G.M. Gadd. 1993. Salt-stimulation of caesium accumulation in the euryhaline microalgaChlorella salina: potential relevance to the development of a biological Cs-removal process. J. Gen. Microbiol. 139: 2239–2244.Google Scholar
  13. 13.
    Avery, S.V., G.A. Codd and G.M. Gadd. 1993. Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalgaChlorella salina. J. Gen. Microbiol. 139: 827–834.Google Scholar
  14. 14.
    Bakken, L.R. and R.A. Olsen. 1990. Accumulation of radiocaesium in fungi. Can. J. Microbiol. 36: 704–710.PubMedGoogle Scholar
  15. 15.
    Barber, J. 1968. Measurement of the membrane potential and evidence for active transport inChlorella pyrenoidosa. Biochim. Biophys. Acta 150: 618–625.PubMedGoogle Scholar
  16. 16.
    Booth, I.R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49: 359–378.PubMedGoogle Scholar
  17. 17.
    Boroughs, H., W.A. Chipman and T.R. Rice. 1957. Laboratory experiments on the uptake, accumulation and loss of radionuclides by marine organisms. In: The Effect of Atomic Radiation on Oceanography and Fisheries. pp. 80–87, National Research Council Publ. 551, Washington.Google Scholar
  18. 18.
    Borst-Pauwels, G.W.F.H. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650: 88–127.PubMedGoogle Scholar
  19. 19.
    Borst-Pauwels, G.W.F.H. 1993. Kinetical parameters of monovalent cation uptake in yeast calculated on accounting for the mutual interaction of cation uptake and membrane potential. Biochim. Biophys. Acta 1152: 201–206.PubMedGoogle Scholar
  20. 20.
    Borst-Pauwels, G.W.F.H. 1993. Mutaual interaction of ion uptake and membrane potential. Biochim. Biophys. Acta 1145: 15–24.PubMedGoogle Scholar
  21. 21.
    Borst-Pauwels, G.W.F.H., P. Schnetkamp and P. Van Well. 1973. Activation of Rb+ and Na+ uptake into yeast by monovalent cations. Biochim. Biophys. Acta 291: 274–279.PubMedGoogle Scholar
  22. 22.
    Bossemeyer, D., A. Schlösser and E.P. Bakker. 1989. Specific cesium transportvia theEscherichia coli Kup (TrkD) K+ uptake system. J. Bacteriol. 171: 2219–2221.PubMedGoogle Scholar
  23. 23.
    Boussiba, S. and J. Gibson. 1991. Ammonia translocation in cyanobacteria. FEMS Microbiol. Rev. 88: 1–14.Google Scholar
  24. 24.
    Boussiba, S., C.M. Resch and J. Gibson. 1984. Ammonia uptake and retention in some cyanobacteria. Arch. Microbiol. 138: 287–292.Google Scholar
  25. 25.
    Clint, G.M., A.F. Harrison and D.M. Howard. 1992. Rates of leaching of137Cs and potassium from different plant litters. J. Environ. Radioactivity 16: 65–76.Google Scholar
  26. 26.
    Davis, J.J. 1963. Cesium and its relationships to potassium in ecology. In: Radioecology, (Schultz, V. and A.W. Klement, eds), pp. 539–556, Reinhold, New York.Google Scholar
  27. 27.
    De la Pena, P., F. Barros, S. Gascon and P.S. Lazo. 1982. The electrochemical proton gradient ofSaccharomyces —the role of potassium. Eur. J. Biochem. 123: 447–453.PubMedGoogle Scholar
  28. 28.
    Derks, W.J.G. and G.W.F.H. Borst-Pauwels. 1979. Apparent three-site kinetics of Cs+ uptake by yeast. Physiol. Plant. 46: 241–246.Google Scholar
  29. 29.
    De Rome, L., and G.M. Gadd. 1991. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 7: 97–104.Google Scholar
  30. 30.
    Duffus, J.H. and L.J. Patterson. 1974. Control of cell division in yeast using ionophore A23187 with calcium and magnesium. Nature 251: 626–628.PubMedGoogle Scholar
  31. 31.
    Fisher, N.S. 1985. Accumulation of metals by marine picoplankton. Mar. Biol. 87: 137–142.Google Scholar
  32. 32.
    Gadd, G.M. 1986. The responses of fungi towards heavy metals. In: Microbes in Extreme Environments (Herbert, R.A. and G.A. Codd, eds), pp. 83–110, Academic Press, London.Google Scholar
  33. 33.
    Gadd, G.M. 1992. Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100: 197–204.Google Scholar
  34. 34.
    Gadd, G.M..1993. Interactions of fungi with toxic metals. New Phytol. 124: 25–60.Google Scholar
  35. 35.
    Ghosh, A., A. Sharma and G. Talukder. 1993. Effects of cesium on cellular systems. Biol. Trace Elem. Res. 38: 165–203.PubMedGoogle Scholar
  36. 36.
    Gilmour, D. 1990. Halotolerant and halophilic microorganisms. In: Microbiology of Extreme Environments (Edwards, C., ed.) pp. 147–177, Open University Press, Milton Keynes.Google Scholar
  37. 37.
    Greenwood, N.N. and A. Earnshaw. 1984. Chemistry of the Elements. Pergamon Press, Oxford.Google Scholar
  38. 38.
    Gustin, M.C., B. Martinac, Y. Saimi, M.R. Culbertson and C. Kung. 1986. Ion channels in yeast. Science 233: 1195–1197.PubMedGoogle Scholar
  39. 39.
    Harvey, R.S. and R. Patrick. 1967. Concentration of137Cs,65Zn and85Sr by freshwater algae. Biotechnol. Bioeng. 9: 449–456.Google Scholar
  40. 40.
    Hughes, M.N. and R.K. Poole. 1989. Metals and Micro-organisms. Chapman and Hall, London.Google Scholar
  41. 41.
    Hughes, M.N. and R.K. Poole. 1991. Metal speciation and microbial growth—the hard (and soft) facts. J. Gen. Microbiol. 137: 725–734.Google Scholar
  42. 42.
    Hunaiti, A.R. and P.E. Kolattukudy. 1982. Isolation and characterization of an acyl-coenzyme A carboxylase from an erythromycin-producingStreptomyces erythraeus. Arch. Biochem. Biophys. 216: 362–371.PubMedGoogle Scholar
  43. 43.
    Jasper, P. 1978. Potassium transport inRhodopseudomonas capsulata. J. Bacteriol. 133: 1314–1322.PubMedGoogle Scholar
  44. 44.
    Johnson, E.E., A.G. O'Donnell and P. Ineson. 1991. An autoradiographic technique for selecting Cs-137-sorbing microorganisms from soil. J. Microbiol. Meth. 13: 293–298.Google Scholar
  45. 45.
    Jones, R.P. and G.M. Gadd. 1990. Ionic nutrition of yeast — physiological mechanisms involved and implications for biotechnology. Enzyme Microb. Technol. 12: 402–418.Google Scholar
  46. 46.
    Jongbloed, R.H., J.M.A.M. Clement and G.W.F.H. Borst-Pauwels. 1991. Kinetics of NH4 + and K+ uptake by ectomycorrhizal fungi. Effect of NH4 + on K+ uptake. Physiol. Plant. 83: 427–432.Google Scholar
  47. 47.
    Kannan, S. 1971 Plasmalemma: the seat of dual mechanisms of ion absorption inChlorella pyrenoidosa. Science 173: 927–929.Google Scholar
  48. 48.
    King, S.F. 1964. Uptake and transfer of cesium-137 byChlamydomonas, Daphnia and bluegill fingerlings. Ecology 45: 852–859.Google Scholar
  49. 49.
    Klionsky, D.J., P.K. Herman and S.D. Emr. 1990. The fungal vacuole: composition, function and biogenesis. Microbiol. Rev. 54: 266–292.PubMedGoogle Scholar
  50. 50.
    Ko, C.H. and R.F. Gaber. 1991. TRK1 and TRK2 encode structurally related K+ transporters inSaccharomyces cerevisiae. Mol. Cell. Biol. 11: 4266–4273.PubMedGoogle Scholar
  51. 51.
    Komarov, E. and B.G. Bennett. 1983. Selected Radionuclides. World Health Organization, Geneva.Google Scholar
  52. 52.
    Kurita, N. and M. Funabashi. 1984. Growth-inhibitory effect on fungi of alkali cations and monovalent inorganic anions and antagonism among different alkali cations. Agric. Biol. Chem. 48: 887–893.Google Scholar
  53. 53.
    Laurence, O.S., J.J. Cooney and G.M. Gadd. 1989. Toxicity of organotins towards the marine yeastDebaryomyces hansenii. Microb. Ecol. 17: 275–285.Google Scholar
  54. 54.
    Leao, C. and N. Van Uden. 1983. Effects of ethanol and other alkanols on the ammonium transport system ofSaccharomyces cerevisiae. Biotechnol. Bioeng. 25: 2085–2090.Google Scholar
  55. 55.
    Lerman, M.I. 1966. Studies on the structure of ribosomes. II. Stepwise dissociation of protein from ribosomes by caesium chloride and the reassembly of ribosome-like particles. J. Mol. Biol. 15: 268–281.PubMedGoogle Scholar
  56. 56.
    Lichko, L.P., L.A. Okorokov and I.S. Kulaev. 1982. Participation of vacuoles in regulation of levels of K+, Mg2+ and orthophosphate ions in cytoplasm of the yeastSaccharomyces carlsbergensis. Arch. Microbiol. 132: 289–293.Google Scholar
  57. 57.
    Macaskie, L.E. 1991. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. CRC Crit. Rev. Biotechnol. 11: 41–112.Google Scholar
  58. 58.
    Morgan, L.O. and J. Myers. 1953. Biological accumulation of inorganic materials by algae. Final report to the US AEC on work performed by the Laboratory of Algal Physiology, University of Texas, Austin, USA.Google Scholar
  59. 59.
    Nakamura, T., H. Tokuda and T. Unemoto. 1982. Effects of pH and monovalent cations on the potassium ion exit from the marine bacterium,Vibrio alginolyticus, and the manipulation of cellular cation contents. Biochim. Biophys. Acta 692: 389–396.Google Scholar
  60. 60.
    Neville, M.C. and G.N. Ling. 1967. Synergistic activation of galactosidase by Na+ and Cs+ and Cs+. Arch. Biochem. Biophys. 118: 596–610.PubMedGoogle Scholar
  61. 61.
    Nieboer, E. and D.H.S. Richardson. 1980. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ. Pollut. Ser. B 1: 3–26.Google Scholar
  62. 62.
    Ochiai, E.I. 1987. General Principles of Biochemistry of the Elements. Plenum Press, New York.Google Scholar
  63. 63.
    Okorokov, L.A., N.A. Andreeva, L.P. Lichko and A.Y. Valiakhmetov. 1983. Transmembrane gradient of K+ ions as an energy source in the yeastSaccharomyces carlsbergensis. Biochem. Int. 6: 463–472.PubMedGoogle Scholar
  64. 64.
    Padan, E. and A. Vitterbo. 1988. Cation transport in cyanobacteria. Meth. Enzymol. 167: 561–577.Google Scholar
  65. 65.
    Paschinger, H. and T. Vanicek. 1974. Effect of gamma irradiation on the two mechanisms of Rb(K) uptake byChlorella. Radiat. Bot. 14: 301–307.Google Scholar
  66. 66.
    Pearson, R.G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc. 85: 3533–3539.Google Scholar
  67. 67.
    Pena, A. and J. Ramirez. 1991. An energy-dependent efflux system for potassium ions in yeast. Biochim. Biophys. Acta 1068: 237–244.PubMedGoogle Scholar
  68. 68.
    Perkins, J. 1993. Caesium Accumulation and Toxicity in Terrestrial Microorganisms. Ph.D. Thesis, University of Dundee.Google Scholar
  69. 69.
    Perkins, J. and G.M. Gadd. 1993. Caesium toxicity, accumulation and intracellular localization in yeasts. Mycol. Res. 97: 717–724.Google Scholar
  70. 70.
    Perkins, J. and G.M. Gadd. 1993. Accumulation and intracellular compartmentation of lithium ions inSaccharomyces cerevisiae. FEMS Microbiol. Lett. 107: 255–260.PubMedGoogle Scholar
  71. 71.
    Perry, J.J. and J.B. Evans. 1961. Role of potassium in the oxidative metabolism ofMicrococcus sodonensis. J. Bacteriol. 82: 551–555.PubMedGoogle Scholar
  72. 72.
    Plato, P. and J.T. Denovan. 1974. The influence of potassium on the removal of137Cs by liveChlorella from low level radioactive wastes. Radiat. Bot. 14: 37–41.Google Scholar
  73. 73.
    Raven, J.A. 1980. Nutrient transport in microalgae. Adv. Microb. Physiol. 21: 47–226.PubMedGoogle Scholar
  74. 74.
    Reed, R.H., P. Rowell and W.D.P. Stewart. 1981. Characterization of the transport of potassium ions in the cyanobacteriumAnabaena variabilis Kütz. Eur. J. Biochem. 116: 323–330.PubMedGoogle Scholar
  75. 75.
    Reed, R.H., P. Rowell and W.D.P. Stewart. 1981. Uptake of potassium and rubidium ions by the cyanobacteriumAnabaena variabilis. FEMS Microbiol. Lett. 11: 233–236.Google Scholar
  76. 76.
    Reglinski, A., P. Rowell, N.W. Kerby and W.D.P. Stewart. 1989. Characterization of methylammonium/ammonium transport in mutant strains ofAnabaena variabilis resistant to ammonium analogues. J. Gen. Microbiol. 135: 1441–1451.Google Scholar
  77. 77.
    Rhodes, P., C.N. Morris, S. Ainsworth and J. Klinderlerer. 1986. The regulatory properties of yeast pyruvate kinase — effects of NH4 + and K+ concentrations. Biochem. J. 234: 705–715.PubMedGoogle Scholar
  78. 78.
    Rice, T.R. 1963. The role of phytoplankton in the cycling of radionuclides in the marine environment. In: Radioecology (Schultz, V. and A.W. Klement, eds), pp. 179–185, Reinhold, New York.Google Scholar
  79. 79.
    Rodriguez-Navarro, A. and J. Ramos. 1984. Dual system for potassium transport inSaccharomyces cerevisiae. J. Bacteriol. 159: 940–945.PubMedGoogle Scholar
  80. 80.
    Sanders, D. 1988. Fungi. In: Solute Transport in Plant Cells and Tissues (Baker, D.A. and J.L. Hall, eds), pp. 106–165, Longman, Harlow.Google Scholar
  81. 81.
    Sgarrella, F., V. Mura, R. Catalini, A. Pitli and P.L. Ipata. 1983. Preliminary characterization of adenosine deaminase (EC, 3.5.4.4) fromBacillus cereus. Boll. Soc. Ital. Biol. Sper. 58: 1145–1151.Google Scholar
  82. 82.
    Shatilov, V.R., M.A. Kasparova and V.L. Kretovich. 1976. Effect of monovalent cations onChlorella glutamate dehydrogenase. Biokhim. 41: 1636–1640.Google Scholar
  83. 83.
    Shieh, Y.J. and J. Barber. 1971. Intracellular sodium and potassium concentrations and net cation movements inChlorella pyrenoidosa. Biochim. Biophys. Acta 233: 594–603.PubMedGoogle Scholar
  84. 84.
    Shumate, S.E., II and G.W. Strandberg. 1985. Accumulation of metals by microbial cells. In: Comprehensive Biotechnology, Vol. 4 (Moo-Young, M., C.N. Robinson and J.A. Howell, eds), pp. 235–247, Pergamon Press, New York.Google Scholar
  85. 85.
    Silver, S. and M. Walderhaug. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228.PubMedGoogle Scholar
  86. 86.
    Singh, S., S. Negi, S. Bharati and H.N. Singh. 1994. Common nitrogen control of caesium (Cs+- uptake, caesium (Cs+) toxicity and ammonium (methylammonium) uptake in the cyanobacteriumNostoc muscorum. FEMS Microbiol. Lett. 117: 243–247.PubMedGoogle Scholar
  87. 87.
    Slaughter, J.C. 1988. Nitrogen metabolism. In: Physiology of Industrial Fungi (Berry, D.R., ed.), pp. 58–76, Blackwell, Oxford.Google Scholar
  88. 88.
    Suelter, C.H. 1970. Enzymes activated by monovalent catios. Science 168: 789–795.PubMedGoogle Scholar
  89. 89.
    Tobin, J.M., D.G. Cooper and R.J. Neufeld. 1984. Uptake of metal ions byRhizopus arrhizus biomass. Appl. Environ. Microbiol. 47: 821–824.Google Scholar
  90. 90.
    Tomioka, N., H. Uchiyama and O. Yagi. 1992. Isolation and characterization of cesium-accumulating bacteria. Appl. Environ. Microbiol. 58: 1019–1023.PubMedGoogle Scholar
  91. 91.
    Tromballa, H.W. 1981. The effect of glucose on potassium transport byChlorella fusca. Zeit. Pflanzenphysiol. 105: 1–10.Google Scholar
  92. 92.
    Van de Mortel, J.B.J., A.P.R. Theuvenet and G.W.F.H. Borst-Pauwels. 1990. A putative K+-selective channel in the plasma membrane of yeast that is blocked by micromolar concentrations of external divalent cations and is insensitive to tetraethylammonium. Biochim. Biophys. Acta 1026: 220–224.PubMedGoogle Scholar
  93. 93.
    Wada, Y., Y. Ohsumi, M. Tanifuji, M. Kasai and Y. Anraku. 1987. Vacuolar channel of the yeastSaccharomyces cerevisiae. J. Biol. Chem. 262: 17260–17263.PubMedGoogle Scholar
  94. 94.
    Walderhaug, M.O., D.C. Dosch and W. Epstein. 1987. Potassium transport in bacteria. In: Ion Transport in Prokaryotes (Rosen, B.P., and S. Silver, eds), pp. 85–130, Academic Press, New York.Google Scholar
  95. 95.
    Williams, L.G. 1960. Uptake of cesium137 by cells and detritus ofEuglena andChlorella. Limnol. Oceanogr. 5: 301–311.Google Scholar
  96. 96.
    Williams, L.G. and H.D. Swanson. 1958. Concentration of cesium-137 by algae. Science 127: 187–188.PubMedGoogle Scholar
  97. 97.
    Witkamp, M. and M.L. Frank. 1970. Effects of temperature, rainfall, and fauna on the transfer of137Cs, K, Mg and mass in consumer-decomposer microcosms. Ecology 51: 465–474.Google Scholar

Copyright information

© Society for Industrial Microbiology 1995

Authors and Affiliations

  • Simon V. Avery
    • 1
    • 2
  1. 1.School of Pure and Applied BiologyUniversity of Wales College of CardiffCardiffUK
  2. 2.School of Biological and Molecular SciencesOxford Brookes UniversityOxfordUK

Personalised recommendations