Journal of Industrial Microbiology

, Volume 3, Issue 4, pp 241–251 | Cite as

Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii

  • Maria F. S. Barbosa
  • Maria B. de Medeiros
  • Ismael M. de Mancilha
  • Henry Schneider
  • Hung Lee
Original Papers


The ability to convertd-xylose to xylitol was screened in 44 yeasts from five genera. All but two of the strains produced some xylitol with varying rates and yields. The best xylitol producers were localized largely in the speciesCandida guilliermondii andC. tropicalis. Factors affecting xylitol production by a selectedC. guilliermondii strain, FTI-20037, were investigated. The results showed that xylitol yield by this strain was affected by the nitrogen source. Yield was highest at 30–35°C, and could be increased with decreasing aeration rate. Using high cell density and a defined medium under aerobic conditions, xylitol yield byC. guilliermondii FTI-20037 from 104 g/ld-xylose was found to be 77.2 g/l. This represented a yield of 81% of the theoretical value, which was computed to be 0.9 mol xylitol per mold-xylose.

Key words

Hemicellulose Fermentation Polyol Pentose d-Xylose Xylitol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baillargeon, M.W., N.B. Jansen, C.-S. Gong and G.T. Tsao. 1983. Effect of oxygen uptake rate on ethanol production by a xylose-fermenting yeast mutant,Candida sp XF217. Biotechnol. Lett. 5: 339–344.Google Scholar
  2. 2.
    Bruinenberg, P.M., P.H.M. de Bot, J.P. van Dijken and W.A. Scheffers. 1984. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19: 256–269.Google Scholar
  3. 3.
    Bruinenberg, P.M., R. Jonker. J.P. van Dijken and W.A. Scheffers. 1985. Utilization of formate as an additional energy source by glucose-limited chemostat cultures ofCandida utilis CBS 621 andSaccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142: 302–306.Google Scholar
  4. 4.
    Bruinenberg, P.M., J.P. van Dijken and W.A. Scheffers. 1983. A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129: 953–964.Google Scholar
  5. 5.
    Chen, L.F. and C.S. Gong. 1985. Fermentation of sugarcane bagasse hemicellulose hydrolysate to xylitol by a hydrolysate-acclimatized yeast. J. Food Sci. 50: 226–228.Google Scholar
  6. 6.
    Chung, I.S. and Y.Y. Lee. 1986. Effect of oxygen and redox potential ond-xylose fermentation by non-growing cells ofPachysolen tannophilus. Enzyme Microb. Technol. 8: 503–507.Google Scholar
  7. 7.
    Culbert, S.J. and Y.-M. Wang. 1986. Oral xylitol in American adults. Nutr. Res. 6: 913–922.Google Scholar
  8. 8.
    Emodi, A. 1978. Xylitol: its properties and food applications. Food Technol. January: 28–32.Google Scholar
  9. 9.
    Gong, C.-S., L.F. Chen and G.T. Tsao. 1981. Quantitative production of xylitol fromd-xylose by a high-xylitol producing yeast mutantCandida tropicalis HXP 2. Biotechnol. Lett. 3: 125–130.Google Scholar
  10. 10.
    Gong, C.S., T.A. Claypool, L.D. McCracken, C.M. Maun, P.P. Veng and G.T. Tsao. 1983. Conversion of pentoses by yeasts. Biotechnol. Bioeng. 15: 85–102.Google Scholar
  11. 11.
    Horecker, B.L. 1962. pentose metabolism in yeasts, p. 29, John Wiley & Sons, Inc., New York.Google Scholar
  12. 12.
    Lee, H., A.L. Atkin, M.F.S. Barbosa, D.R. Dorscheid and H. Schneider. 1988. Effect of biotin limitation on the conversion of xylose to ethanol and xylitol byPachysolen tannophilus andCandida guilliermondii. Enzyme Microb. Technol. 10: 81–84.Google Scholar
  13. 13.
    Lee, H., P. Biely, R.K. Latta, M.F.S. Barbosa and H. Schneider. 1986. Utilization of xylan by yeasts and its conversion to ethanol byPichia stipitis strains. Appl. Environ. Microbiol. 52: 320–324.Google Scholar
  14. 14.
    Lee, H., A.P. James, D.M. Zahab, G. Mahmourides, R. Maleszka and H. Schneider. 1986. Mutants ofPachysolen tannophilus with improved production of ethanol fromd-xylose. Appl. Environ. Microbiol. 51: 1252–1258.Google Scholar
  15. 15.
    Lehninger, A.L. 1982. Principles of Biochemistry. Worth Publishers, Inc., New York.Google Scholar
  16. 16.
    Onishi, H. and T. Suzuki. 1966. The production of xylitol,l-arabinitol and ribitol by yeasts. Agric. Biol. Chem. 30: 1139–1144.Google Scholar
  17. 17.
    Onishi, H. and T. Suzuki. 1969. Microbial production of xylitol from glucose. Appl. Microbiol. 18: 1031–1035.PubMedGoogle Scholar
  18. 18.
    Slininger, P.J., P.C. Bolen and C.P. Kurtzman. 1987.Pachysolen tannophilus: properties and process considerations for ethanol production fromd-xylose. Enzyme Microb. Technol. 9: 5–15.Google Scholar
  19. 19.
    Wang, Y.-M. and J. van Eys. 1981. Nutritional significance of fructose and sugar alcohols. 1: 437–475.Google Scholar
  20. 20.
    Watson, N.E., B.A. Prior, J.C. du Preez and P.M. Lategan. 1984. Oxygen requirements ford-xylose fermentation to ethanol and polyols byPachysolen tannophilus. Enzyme Microb. Technol. 6: 447–450.Google Scholar

Copyright information

© Society for Industrial Microbiology 1988

Authors and Affiliations

  • Maria F. S. Barbosa
    • 1
  • Maria B. de Medeiros
    • 1
  • Ismael M. de Mancilha
    • 1
  • Henry Schneider
    • 2
  • Hung Lee
    • 2
  1. 1.Biotechnology DivisionFoundation for Industrial TechnologySao PauloBrazil
  2. 2.Division of Biological SciencesNational Research Council of CanadaOttawaCanada

Personalised recommendations