Journal of Industrial Microbiology

, Volume 3, Issue 3, pp 139–146 | Cite as

Filamentous growth ofPseudomonas aeruginosa

  • J. Barry Wright
  • J. W. Costerton
  • W. F. McCoy
Original Papers

Summary

The growth of two strains ofPseudomonas aeruginosa in stirred batch cultures was monitored by optical density, DNA concentration, and acridine orange direct cell count measurements. Growth of adherent bacteria in pure culture was also observed on suspended glass discs by light and scanning electron microscopy. Strain MUCOID produced significant numbers of filamentous cells in broth culture and in the adherent population, while strain PAO 381 did not produce elongated cells. Filamentous growth of MUCOID could be prevented by the addition of 5 × 10−2 M Mg2+. However, the addition of 0.66 mM EDTA caused an increased proportion of the population (>50%) of MUCOID cells to become filamentous in broth culture. The results are discussed and related to theories regarding bacterial plasticity, and filamentation of normally bacillary cells.

Key words

Biofilm Plasticity Adherent bacteria Elongation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aftring, R.P. and B. Taylor. 1979. Assesment of microbial fouling in an ocean thermal conversion project. Appl. Environ. Microbiol. 38: 734–739.Google Scholar
  2. 2.
    Allen, M.J., H.T. Raymond and E.E. Geldreich. 1980. The occurrence of microorganisms in water main encrustations. J. Am. Water Works Assoc. 72: 614–625.Google Scholar
  3. 3.
    Brown, M.R.W. and P. Williams. 1985. The influence of environment on envelope properties affecting survival of bacteria in infections. Annu. Rev. Microbiol. 39: 527–556.PubMedGoogle Scholar
  4. 4.
    Buchanan, R.E. and N.E. Gibbons. 1974. Bergey's Manual of Determinative Bacteriology. 8th Edn., Williams and Wilkins, Baltimore, 1268 pp.Google Scholar
  5. 5.
    Costerton, J.W. 1980. Some techniques involved in study of adsorption of microorganisms to surfaces. In: Adsorption of Microorganisms to Surfaces (Britton, G. and K.C. Marshall, eds.), pp. 403–428, John Wiley and Sons, New York.Google Scholar
  6. 6.
    Costerton, J.W., R.T. Irvin and K.-J. Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35: 299–324.PubMedGoogle Scholar
  7. 7.
    Jensen, R.H. and C.A. Woolfolk. 1985. Formation of filaments byPseudomonas putida. Appl. Environ. Microbiol. 50: 364–372.Google Scholar
  8. 8.
    Labarca, C. and K. Paigen. 1980. A simple, rapid and sensitive DNA assay procedure. Anal. Biochem. 102: 344–352.PubMedGoogle Scholar
  9. 9.
    Lorian, V., B.A. Atkinson and L. Amaral. 1979. Effects of sub-minimum inhibitory concentrations of antibiotics onPseudomonas aeruginosa: The MIC/MAC ratio. In:Pseudomonas aeruginosa (Sabath, C.D., ed.), Hans Huber Publisher, Bern.Google Scholar
  10. 10.
    Lorian, V., B.A. Atkinson, A. Waluschka and Y. Kim. 1982. Ultrastructure, in vitro and in vivo, of Staphylococci exposed to antibiotics. Curr. Microbiol. 7: 301–305.Google Scholar
  11. 11.
    McCoy, J.W. 1980. Microbiology of Cooling Water, 234 pages, Chemical Publishing Company, New York.Google Scholar
  12. 12.
    McCoy, W.F., J.D. Bryers, J. Robbins and J.W. Costerton. 1981. Observations of fouling biofilm formation. Can. J. Microbiol. 27: 910–917.PubMedGoogle Scholar
  13. 13.
    McCoy, W.F. and J.W. Costerton. 1982. Fouling biofilm development in tubular flow systems. Dev. Ind. Microbiol. 23: 551–558.Google Scholar
  14. 14.
    McCoy, W.F. and J.W. Costerton. 1982. Growth of sessileSphaerotilus natans in a tubular recycle system. Appl. Environ. Microbiol. 43: 1490–1494.Google Scholar
  15. 15.
    Nickel, J.C., J.B. Wright, I. Ruseska, T.J. Marrie, C. Whitfield and J.W. Costerton. 1985. Antibiotic resistance ofPseudomonas aeruginosa colonizing urinary catheter material. Eur. J. Clin. Microbiol. 4: 213–218.PubMedGoogle Scholar
  16. 16.
    Picologlou, B.F., N. Zelver and W.G. Characklis. 1980. Biofilm growth and hydraulic performance. J. Hydraul. Div. HY5: 733–746.Google Scholar
  17. 17.
    Ridgeway, H.F. and B.H. Olson. 1981. Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system. Appl. Environ. Microbiol. 41: 274–287.PubMedGoogle Scholar
  18. 18.
    Slater, M., and M. Schaecter. 1974. Control of cell division of bacteria. Bacteriol. Rev. 38: 191–221.Google Scholar
  19. 19.
    Spurr, A. 1969. A low viscosity epoxy resin embedding medium for electron microsocpy. J. Ultrastruct. Res. 26: 31–41.PubMedGoogle Scholar
  20. 20.
    Wardell, J.N., C.M. Brown and D.C. Ellwood. 1980. A continuous culture study of the attachment of bacteria to surfaces. In: Microbial Adhesion to Surfaces (Berkeley, R.C.W. et al., eds.), pp. 221–229, Ellis Horwood, Chichester.Google Scholar
  21. 21.
    Wyndham, R.C. and J.W. Costertom. 1981. In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl. Environ. Microbiol. 41: 791–800.Google Scholar

Copyright information

© Society for Industrial Microbiology 1988

Authors and Affiliations

  • J. Barry Wright
    • 1
  • J. W. Costerton
    • 1
  • W. F. McCoy
    • 1
  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations