Current Microbiology

, Volume 13, Issue 5, pp 285–289

Fructose degradation byDesulfovibrio sp. in pure culture and in coculture withMethanospirillum hungatei

  • Ralf Cord-Ruwisch
  • Bernard Ollivier
  • Jean-Louis Garcia
Article

Abstract

In a mineral medium containing sulfate, the sulfate-reducing bacteriumDesulfovibrio sp. strain JJ degraded 1 mol of fructose stoichiometrically to 1 mol of H2S, 2 mol of acetate, and presumably 2 mol of CO2. The doubling time was 10 h, and the yield was 41.6 g dry weight/mol fructose degraded. In the absence of sulfate, the hydrogenophilic methanogenMethanospirillum hungatei replaced sulfate as hydrogen sink. In such cocultures, 1 mol of fructose was converted to acetate, methane, succinate, and presumably CO2 in varying concentrations. The growth yield of the H2-transferring association was 33 g dry weight/mol fructose. In the absence of sulfate,Desulfovibrio strain JJ slowly fermented 1 mol of fructose to 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol. The results are compared with those of other anaerobic hexose-degrading bacteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Akagi JM, Jackson G (1967) Degradation of glucose by proliferating cells ofDesulfotomaculum nigrificans. Appl Microbiol 15:1427–1430Google Scholar
  2. 2.
    Badziong W, Thauer RK (1978) Growth yields and growth rates ofDesulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as sole energy source. Arch Microbiol 117:209–214PubMedGoogle Scholar
  3. 3.
    Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth ofDesulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169PubMedGoogle Scholar
  4. 4.
    Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbial Methods 4:1–13Google Scholar
  5. 5.
    Cord-Ruwisch R, Garcia JL (1985) Isolation and characterization of an anaerobic benzoate degrading spore-forming sulfate reducing bacterium,Desulfotomaculum sapomandens sp. nov. FEMS Microbiol Lett 29:325–330Google Scholar
  6. 6.
    Cord-Ruwisch R, Ollivier B (1986) Interspecific hydrogen transfer during methanol degradation bySporomusa acidovorans and hydrogenophilic anaerobes. Arch Microbiol 144:163–165Google Scholar
  7. 7.
    Horder W, Van Dijken JP (1976) Theoretical considerations on the relations between energy production and growth of methane utilizing bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goettingen: Goltze, pp 403–418Google Scholar
  8. 8.
    Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49PubMedGoogle Scholar
  9. 9.
    Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JB, Ribbons DW (eds) Methods in microbiology, vol 3B. New York: Academic Press, pp 117–132Google Scholar
  10. 10.
    Jones WJ, Guyot JP, Wolfe RS (1984) Methanogenesis from sucrose by defined immobilized consortia. Appl Environ Microbiol 47:1–6Google Scholar
  11. 11.
    Jorgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Marine Biol 24:189–201Google Scholar
  12. 12.
    Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics ofDesulfotomaculum species. Arch Microbiol 134:203–207Google Scholar
  13. 13.
    Loveley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater concentrations. Appl Environ Microbiol 45:187–192Google Scholar
  14. 14.
    Macy JM, Snellen JE, Hungate RE (1972) Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:1318–1323PubMedGoogle Scholar
  15. 15.
    Nethe-Jaenchen R, Thauer RK (1984) Growth yields and saturation constant ofDesulfovibrio vulgaris in chemostat culture. Arch Microbiol 137:236–240Google Scholar
  16. 16.
    Odom JM, Peck, HD Jr (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate reducing bacteriaDesulfovibrio sp. FEMS Microbiol Lett 12:47–50Google Scholar
  17. 17.
    Ollivier B, Cord-Ruwisch R, Lombardo A, Garcia JL (1985) Isolation and characterization ofSporomusa acidovorans sp.nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142:307–310Google Scholar
  18. 18.
    Peck HD Jr (1984) Physiological diversity of the sulfate reducing bacteria. In: Strohl WR, Tuorinen OH (ed) Microbial chemoautotrophy. Columbus: Ohio State University Press, pp 310–335Google Scholar
  19. 19.
    Peck HD Jr, Odom JM (1984) Hydrogen cycling inDesulfovibrio: a new mechanism for energy coupling in anaerobic microorganisms. In: Microbial mats: stromatolites. New York: AR Liss, pp 215–243Google Scholar
  20. 20.
    Postgate JR (1984) The sulfate-reducing bacteria. Cambridge: Cambridge University PressGoogle Scholar
  21. 21.
    Sansone FJ, Martens CS (1981) Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709Google Scholar
  22. 22.
    Sleytr K, Adam H, Klaushofer H (1969) Die Feinstruktur der Zellwand und Cytoplasma-Membran vonClostridium nigrificans dargestellt mit Hilfe der Gefrieraetz- und Ultraduennschicht-Technik. Arch Mikrobiol 66:40–58PubMedGoogle Scholar
  23. 23.
    Sorensen J, Christensen D, Jorgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediments. Appl Environ Microbiol 42:5–11Google Scholar
  24. 24.
    Tschech A, Pfennig N (1984) Growth yield increase to caffeate reduction inAcetobacterium woodii. Arch Microbiol 137:163–167Google Scholar
  25. 25.
    Widdel F (1980) Anaerober Abbau von Fettsaeuren und Benzoesaeure durch neu isolierte Arten Sulfat-reduzierter Bakterien. Thesis, University of GöttingenGoogle Scholar
  26. 26.
    Widdel F (1984) Sulfate-reducing bacteria and their ecological niches. In: Barnes HG (ed) Anaerobic bacteria in habitats other than man. Oxford. BlackwellGoogle Scholar
  27. 27.
    Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfurreducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology. Baltimore Williams and Wilkins, pp 663–679Google Scholar
  28. 28.
    Winter JU, Wolfe RS (1980) Methane formation from fructose by syntrophic associations ofAcetobacterium woodii and different strains of methanogens. Arch Microbiol 124:73–79PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Ralf Cord-Ruwisch
    • 1
  • Bernard Ollivier
    • 1
  • Jean-Louis Garcia
    • 1
  1. 1.Laboratoire de Microbiologie, ORSTOMUniversité de ProvenceMarseille cédexFrance

Personalised recommendations