Advertisement

Current Microbiology

, Volume 14, Issue 1, pp 13–17 | Cite as

Expression of chloramphenicol resistance specified by plasmid pHY416 hosted inCorynebacterium glutamicum

  • Margaret L. Britz
  • Geoffrey R. Best
Article

Abstract

Chloramphenicol (Cm)-resistant colonies ofCorynebacterium glutamicum strain AS019 hosting plasmid pHY416 occurred at a frequency of 4×10−7 when this strain, which normally expresses kanamycin (Km) resistance only, was placed under positive selection. These isolates produced a chloramphenicol acetyltransferase (CAT) and were tenfold more resistant to Cm than the parent strain. Resistance was lost in the absence of Cm selection but could be reselected from Km-resistant clones by reapplying Cm selection. Restriction endonuclease analyses of plasmids extracted from Cm-sensitive and-resistant strains indicated that expression of CAT activity corresponded to a loss of 0.9 kb of DNA from plasmid pHY416.

Keywords

Restriction Endonuclease Kanamycin Chloramphenicol Parent Strain Restriction Endonuclease Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Best GR, Britz ML (1984) Generation of chloramphenicol resistant strains ofCoryebacterium glutamicum after exposing protoplasts to pC194 DNA fromBacillus subtilis. In: Abstracts, 7th International Biotechnology Symposium. New Delhi: India Institute of Technology, pp 69–70Google Scholar
  2. 2.
    Best GR, Britz ML (1986) Facilitated protoplasting in certain auxotrophic mutants ofCorynebacterium glutamicum. Appl Microbiol Biotechnol 23:288–293Google Scholar
  3. 3.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedGoogle Scholar
  4. 4.
    Britz ML, Wilkinson RG (1978) Chloramphenicol acetyltransferase ofBacteroides fragilis. Antimicrob Agents Chemother 14:105–111PubMedGoogle Scholar
  5. 5.
    Brückner R, Zyprian E, Matzura H (1984) Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in Gram-positive and Gram-negative bacteria. Gene 32:151–160PubMedGoogle Scholar
  6. 6.
    Byeon W-H, Weisblum B (1984) Post-transcriptional regulation of chloramphenicol acetyl transferase. J Bacteriol 158:543–550PubMedGoogle Scholar
  7. 7.
    Chang S, Cohen SN (1979) High frequency transformation ofBacillus subtilis protoplasts by plasmid DNA. Molec Gen Genet 168:111–115PubMedGoogle Scholar
  8. 8.
    Dubnau D, Gryczan T, Contente S, Shivakumar AG (1980) Molecular cloning inBacillus subtilis. In: Setlow JK, Hollaender A (eds) Genetic engineering: principles and methods, vol 2, New York: Plenum, pp 115–131Google Scholar
  9. 9.
    Goldfarb DS, Rodriguez RL, Doi RH (1982) Translational block to expression of theEscherichia coli Tn9 derived chloramphenicol resistance gene inBacillus subtilis. Proc Natl Acad Sci USA 79:5886–5890PubMedGoogle Scholar
  10. 10.
    Gryczan T, Shivakumar AG, Dubnau D (1980) Characterization of chimeric plasmid cloning vehicles inBacillus subtilis. J Bacteriol 141:246–253PubMedGoogle Scholar
  11. 11.
    Hopwood DA (1981) Genetic studies with bacterial protoplasts. Annu Rev Microbiol 35:237–272PubMedGoogle Scholar
  12. 12.
    Kaneko H, Sakaguchi K (1979) Fusion of protoplasts and genetic recombination ofBrevibacterium flavum. Agric Biol Chem 43:1671–1676Google Scholar
  13. 13.
    Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311PubMedGoogle Scholar
  14. 14.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor NY: Cold Spring Harbor LaboratoryGoogle Scholar
  15. 15.
    Míwa K, Matsui K, Terabe M, Ito K, Ishida M, Takagi H, Nakamori S, Sano K (1985) Construction of novel shuttle vectors and a cosmid vector for the glutamic acid-producing bacteriaBrevibacterium lactofermentum andCorynebacterium glutamicum. Gene 39:281–286PubMedGoogle Scholar
  16. 16.
    Momose H, Miyashiro S, Oba M (1976) On the transducing phages in glutamic acid-producing bacteria. J Gen Appl Microbiol 22:119–129Google Scholar
  17. 17.
    Ozaki A, Katsumata R, Oka T, Furuya A (1984) Functional expression of the genes ofEscherichia coli in gram-positiveCorynebaterium glutamicum. Molec Gen Genet 196:175–178PubMedGoogle Scholar
  18. 18.
    Santamaria R, Gil JA, Mesas JM, Martin JF (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system inBrevibacterium lactofermentum. J Gen Microbiol 130:2237–2246Google Scholar
  19. 19.
    Santamaria RI, Gil JA, Martin JF (1985) High-frequency transformation ofBrevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol 162:463–467PubMedGoogle Scholar
  20. 20.
    Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Follettie MT, Walker GC, Sinskey AJ (1985) Cloning vector system forCorynebacterium glutamicum. J Bacteriol 162:591–597PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Margaret L. Britz
    • 1
  • Geoffrey R. Best
    • 2
  1. 1.Industrial Microbiology Unit, Division of Chemical and Wood TechnologyCSIROClaytonAustralia
  2. 2.Department of Applied BiologyRMITMelbourneAustralia

Personalised recommendations