Applied Physics A

, Volume 63, Issue 3, pp 247–255 | Cite as

Laser ablation deposition measurements from silver and nickel

Invited Paper

Abstract

The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20J/cm2. The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing pressure of the ambient gases, nitrogen and argon.

PACS

79.20 Ds 81 15 Fg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Matthias, R.W. Dreyfus.Photoacoustic, photothermal and photochemical processes at surfaces and in thin films, ed. P. Hess, pages 89–128. Springer, 1989Google Scholar
  2. 2.
    Pulsed laser deposition of thin films, eds. D.B. Chrisey and G.H. Hubler. John Wiley, 1994Google Scholar
  3. 3.
    Laser ablation: mechanisms and applications-II, AIP Conference proceedings 288, eds. J.C. Miller and D.B. Geohegan. AIP Press, New York, 1994Google Scholar
  4. 4.
    Laser ablation in materials processing: Fundamentals and applications, MRS Proceedings 285, eds. B. Braren, J.J. Dubowski and D.P. Norton. Materials Research Society, Pittsburg, 1993Google Scholar
  5. 5.
    R.F. Haglund Jr., R. Kelly. Mat. Fys. Medd. Kgl. Dansk. Vidensk. Selsk., 43: 527, 1993Google Scholar
  6. 6.
    R.W. Dreyfus.Appl. Surf. Sci.,86: 29, 1995Google Scholar
  7. 7.
    J.C.S. Kools. in:Pulsed laser deposition of metals, eds. D.B. Chrisey and G.H. Hubler., Chapter 19, pages 455-471. John Wiley, 1994Google Scholar
  8. 8.
    R.W. Dreyfus.J. Appl. Phys. 69: 1721, 1991Google Scholar
  9. 9.
    J.P. Rebouillat, B. Michelutti, Y. Souche, J.P. Gavigan, D. Givord, A. Lienard.Mat. Res. Sac. Symp. Proc., 151: 259, 1989Google Scholar
  10. 10.
    T. Gibert, B. Dubreuil, M.F. Barthe, J.L. Debrun.J. Appl. Phys., 74: 3506, 1993Google Scholar
  11. 11.
    M. Macler, M.E. Fajardo.Appl. Phys. Lett., 65: 159, 1994Google Scholar
  12. 12.
    R. Jordan, D. Cole, J.G. Lunney, K. Mackay, and D. Givord.Appl. Surf. Sci., 86: 24, 1995Google Scholar
  13. 13.
    J.G. Lunney.Appl. Surf. Sci., 86: 79, 1995Google Scholar
  14. 14.
    S. Amoruso, V. Berardi, R. Bruzzese, N. Spinelli, R. Velotta, M. Armenante.Appl. Surf. Sci., 1996. In pressGoogle Scholar
  15. 15.
    J. Perez, B.R. Weiner.Appl. Surf. Sci., 62: 281, 1992Google Scholar
  16. 16.
    J. Schou, O. Ellegaard.AIP, 288: 64, 1994Google Scholar
  17. 17.
    H. Helvajian, R. Welle.J. Chem. Phys., 91: 2626, 1991Google Scholar
  18. 18.
    M.J. Shea, R.N. Compton,Phys. Rev. B, 47: 9967, 1993Google Scholar
  19. 19.
    H.S. Kim, H. Helvajian.AIP, 288: 38, 1994Google Scholar
  20. 20.
    E. Matthias, M. Reichling, J. Siegel, O.W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske.Appl. Phys. A, 58: 129, 1994Google Scholar
  21. 21.
    C.R. Phipps Jr., T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, T.R. King.J. Appl. Phys., 64: 1083, 1988Google Scholar
  22. 22.
    C.R. Phipps, R.W. Dreyfus.in: Laser ionization mass analysis, eds. A. Vertes, R. Gijbels and F. Adams., pages 369–431. John Wiley, 1993Google Scholar
  23. 23.
    S. Küper, J. Brannon, K. Brannon.Appl. Phys. 56: 43, 1993Google Scholar
  24. 24.
    A. Vertes, R.W. Dreyfus, D.E. PlattIBM. J. Res. Develop., 38: 3, 1994Google Scholar
  25. 25.
    T.D. Bennett, C.P. Grigoropoulos, D.J. Krajnovich.J. Appl. Phys., 77: 849, 1995Google Scholar
  26. 26.
    A. Peterlongo, A. Miotello, R. Kelly.Phys. Rev. E, 50: 4716, 1994Google Scholar
  27. 27.
    J. Hicks, L.E. Urbach, E.W. Plummer, H.L. Dai.Phys. Rev. Lett., 61(22): 2588, 1988Google Scholar
  28. 28.
    S. Preuss, E. Matthias, M. Stuke.Appl. Phys. A, 59: 79, 1994Google Scholar
  29. 29.
    J.H. Brannon, K.W. Brannon.J. Vac. Sci. Techn., B 7: 1275, 1989Google Scholar
  30. 30.
    F. Kreis, S. Bohn.Principles of heat transfer. Harper and Row, New York, 1986Google Scholar
  31. 31.
    A. Miotello, R. Kelly.Appl. Phys. Lett., 67: 3535, 1995Google Scholar
  32. 32.
    S. Fähler, H.U. Krebs.Appl. Surf. Sci., 1996. To be publishedGoogle Scholar
  33. 33.
    W. Svendsen.Ris∅-report, Risø National Laboratory, unpublished, 1996Google Scholar
  34. 34.
    E. van de Riet, C.J.C.M. Nillesen, J. Dieleman.J. Appl. Phys., 74: 2008, 1993Google Scholar
  35. 35.
    K. Saenger. in:Pulsed laser deposition of thin films, eds. D.B. Chrisey and G.K. Hubler. chapter 7, pages 199–227. John Wiley, 1994Google Scholar
  36. 36.
    W. Svendsen, J. Schou, B. Thestrup, O. Ellegaard.Appl. Surf. Sci. 96–98, 518, 1996.Google Scholar
  37. 37.
    R. Kelly, R.W. Dreyfus.Nucl. Instr. Meth. B, 32: 341, 1988Google Scholar
  38. 38.
    J.C.S. Kools, E. van de Riet, J. Dieleman.Appl. Surf. Sci., 69: 133, 1993Google Scholar
  39. 39.
    J.C.S. Kools, J. Dieleman.J. Appl. Phys., 74: 4163, 1993Google Scholar
  40. 40.
    J.C.S. Kools.J. Appl. Phys., 74: 6401, 1993Google Scholar
  41. 41.
    J.M.E. Harper. in:Plasma-surface interactions and processing of materials, eds. O. Auciello, A. Gras-Marti, J.A. Valles-Abarca and D.L. Flamm, pages 251–280. Kluwer Academics, 1990Google Scholar
  42. 42.
    Handbuch der Inorganischen Chemie, volume 61 A2. Verlag Chemie, WeinheimGoogle Scholar
  43. 43.
    R.H. Singh, J. Narayan.Mat. Sci. Eng., 133: 217, 1989Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Department of Optics and Fluid DynamicsRisø National LaboratoryRoskildeDenmark
  2. 2.Odense UniversityOdense MDenmark

Personalised recommendations