Applied Physics A

, Volume 63, Issue 2, pp 117–121 | Cite as

Picosecond laser ablation of thin copper films

  • J. Jandeleit
  • G. Urbasch
  • H. D. Hoffmann
  • H. -G. Treusch
  • E. W. Kreutz
Regular Papers

Abstract

The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toFthres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.

PACS

81.60.B 79.20D 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Martin, R. Trainham, P. Agostini, G. Petite: Phys. Rev. B45, 69 (1992)Google Scholar
  2. 2.
    W. Marine, M. Gerri, P. Thomsen-Schmidt, J.M. Scotto d' Aniello: Appl. Surf. Sci.69, 290 (1993)Google Scholar
  3. 3.
    O. Bostanjoglo, R. Niedrig, B. Wedel: J. Appl. Phys.76, 3045 (1994)Google Scholar
  4. 4.
    J. Jandeleit, G. Urbasch, D. Hoffmann, H.-G. Treusch, E.W. Kreutz: Proc. Laser 95 (Springer Berlin, Heidelberg) (in press)Google Scholar
  5. 5.
    H. Kurz, L.A. Lompré, J.M. Liu: J. Phys. (Paris) C5, 23 (1983)Google Scholar
  6. 6.
    H. Kurz: Mater. Res. Soc. Symp. Proc.74, 3 (1987)Google Scholar
  7. 7.
    M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov: Sov. Phys. -JETP4, 173 (1957)Google Scholar
  8. 8.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel'man: Sov. Phys. -JETP39, 375 (1974)Google Scholar
  9. 9.
    H.S. Carslaw, J.C. Jaeger:Conduction of Heat in Solids (Oxford Univ. Press London 1959)Google Scholar
  10. 10.
    J.H. Bechtel: J. Appl. Phys.46, 1585 (1975)Google Scholar
  11. 11.
    J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen: Phys. Rev. Lett.53, 1873 (1984)Google Scholar
  12. 12.
    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley: Phys. Rev. Lett.58, 1680 (1987)Google Scholar
  13. 13.
    W.S. Farn, R. Storz, H.W.K. Tom, J. Broker: Phys. Rev. Lett.68, 2834 (1992)Google Scholar
  14. 14.
    X.Y. Wang, D.M. Riffe, Z.-S. Lee, M.C. Downer: Phys. Rev. B50, 8016 (1994)Google Scholar
  15. 15.
    T.Q. Qiu, C.L. Tien: J. Heat Transfer115, 842 (1993)Google Scholar
  16. 16.
    C.A. MacDonald, A.M. Malvezzi, F. Spaepen:Beam-Solid interactions and Phase Transformations, ed. by H. Kurz, G.L. Olsen, J.M. Poate Mater. Res. Soc. Symp. Proc., Vol. 51, (1986) pp. 277–282Google Scholar
  17. 17.
    H.D. Hoffman, H.-G. Treusch, E.W. Kreutz: Proc. Laser 95 (Springer Berlin, Heidelberg) (in press)Google Scholar
  18. 18.
    B. Hüttner, G. Rohr. Appl. Surf. Sci. (in press)Google Scholar
  19. 19.
    E. Matthias, M. Reichling, J. Siegel, O.W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske: Appl. Phys. A58, 129 (1994)Google Scholar
  20. 20.
    S. Preuss. A. Demchuk, M. Stuke: Appl. Phys. A61, 33 (1995)Google Scholar
  21. 21.
    G. Urbasch, J. Jandeleit, H.-G. Treusch, E.W. Kreutz: Pro. ECLAT 96, ed. by H.W. Bergmann, F. Daasinger (RWT Wiesbaden) (in press)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Jandeleit
    • 1
  • G. Urbasch
    • 1
  • H. D. Hoffmann
    • 1
  • H. -G. Treusch
    • 2
  • E. W. Kreutz
    • 1
  1. 1.Lehrstuhl für LasertechnikRWTH AachenAachenGermany
  2. 2.Fraunhofer-Institut für LasertechnikAachenGermany

Personalised recommendations